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1 Introduction 
The integrated tracker task force (ITTF) was formed in November 2000, to develop a new tracking 
code for the STAR collaboration. The interest in a new tracker spurred from the realization that the 
existing tracker, written in FORTRAN, was increasingly difficult to maintain, and could not readily 
be adapted or modified to include tracking in detectors other than the STAR TPC. It also became 
obvious the tracker speed would render difficult the analysis of the very large datasets the STAR 
experiment was about to accumulate. Moreover, the ongoing commissioning of the SVT and FTPC 
was bound to compound the problem, increase the complexity of the code, and its running time. A 
new tracker was indeed needed: one that could deliver equivalent performance in terms of track 
reconstruction quality, but at much increased speed, and with better maintainability and flexibility. 
The new code shall be written with an object-oriented design, provide for easy upgrades, addition or 
substitution of components. 

The functional, performance and implementation requirements of the tracker are presented in Section 
1.  These requirements form the envelope within which, loosely speaking, the new tracker was 
designed. The design began with the specification of the reconstruction algorithms and the elaboration 
of a conceptual object model. These are presented in Section 3 of this document. The implementation 
of the conceptual model is described in Section 4.  

 

1.1 About the Task Force 
 
1.1.1 Task Force Charge 
 

The integrated tracker task force was formed by the STAR computing leader on Nov 13th, 2000 with 
the mission to design, test, evaluate, implement, and document an integrated tracker for STAR. The 
new tracker shall: 
� Provides highly efficient and minimum-contamination information on particles emitted into 

the STAR acceptance.  

� Incorporates all tracking detectors taking into account their detailed geometry, calibration, 
material location and thickness, as well as magnetic field effects. 

� Provides tools that allow extrapolating from one position on the track to any other position 
along the flight path of the particle with high accuracy (track extrapolation).  

The full charge of the task force is listed in Appendix.  

 
1.1.2 Task Force Members 
 

The core task force initially included Ben Norman (Kent State), Mike Miller (Yale), and Claude 
Pruneau (Wayne State), who developed the core components of the system. Andrew Rose (Wayne 
State), and Manuel Calderon (BNL) have recently joined the task force, and contributed to the 
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evaluation of the performance of the tracker as well as the addition of various components targeted 
towards the integration of the tracker into the STAR main stream analysis.  

We thank Matthias Messer (BNL) who acted as coordinator for the integration of the tracker into 
STAR production code. We acknowledge the very helpful assistance of Helen Caines (Ohio 
State/Yale) in the elaboration of the geometry model of the SVT. We also acknowledge the invaluable 
contributions of Karel Safarik and Yuri Belikov, both from CERN, who gave us the code they 
developed for the ALICE tracker, and from which we extracted many useful components that are now 
seamlessly integrated in the STAR ITTF tracker.  

Finally, we are also indebted to the following STAR collaborators who have and are still contributing 
to the evaluation of the tracker: Dan Magestro (OSU), Fabrice Retiere (LBL), Jennifer Klay (LBL), 
Lee Barnby (KSU), Mark Heinz (Yale), Mercedes Lopez-Noriega (OSU), Richard Witt (Yale), Sergei 
Panitkin (BNL), and Zhangbu Xu (BNL). 

 

1.2 Further Documentation 
 
This document presents an overview of the requirements, conceptual design, and implementation of 
the STAR ITTF tracker. As such, it is not meant to present a full description of the tracker code 
implementation which is separately available online, on the STAR website at the following URL: 

http://www.star.bnl.gov/webdatanfs/dox/html 

 

2 Requirements 
The requirements are formulated in terms of functional requirements, performance requirements, and 
implementation requirements. They are presented separately in the next three sections. 

2.1 Functional requirements 
 

The tracker must be designed to satisfy the following generic functional requirements: 

� Design and use flexible and polymorphic interface to enable access to data from various 
detectors such as, in STAR, the TPC, SVT, SSD, and possibly other detectors such as the 
FTPC, and even the TOF, and EMC.  

� Enable a certain degree of flexibility on the detector geometry in order to accommodate 
upgrades.  

� Use a Kalman Filter/Fitter to account for track multiple scattering and energy losses. 

� Allow for many-to-many point to track relationships  

� Develop an efficient ghost track rejector and merger. 

� Use full error matrices (covariance)  in the handling of hits and tracks. 

� Use a robust track model - unlikely to carry “nan”. 
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� Allow for usage of different track models if needed by using an abstract track model interface. 

 

 

2.2 Performance Requirements 
 

� The new tracker should: 

� Enable good track reconstruction to optimize the reconstruction efficiency while minimizing 
ghost or false tracks.   

� Handle hit errors properly so that fit chi-square are meaningful  

� Be faster the existing Star tracker  

� Make efficient use of memory to limit the size of objects - however emphasis is on “speed” 
and reconstruction quality.  

 

2.3 Implementation Requirements 
 

The code should be implemented and deployed according to the following requirements. The code 
shall be 

� Written entirely in C++  

� Developed with an object oriented design  

� Multi-platform portable  

� Compatible with ROOT  

� Adhere to STAR code development standards  

� Documented as much as possible. Documentation to include class,  method level 
specifications as well as usage examples.  

� Archived using the STAR archival system  

 

3 Tracker Design 
 

The tracker goals and design considerations are discussed in Section 3.1.  The tracker algorithm is 
presented in Section 3.2 along with the conceptual detector and track model used in the design and 
implementation of this tracker. 

3.1 Statement of the problem and design considerations 
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This tracker is meant to provide both track finding and fitting functionality. Hits from measured with 
various detector components must be associated to reconstruct particle trajectories, and fitted to 
determine the curvature, direction, and origin of the track. One must also, and more generally, 
determine the momentum and species identity of the particle.  

The determination of the curvature is somewhat straightforward. A minor difficulty however 
arises when trying to reconstruct the momentum vector of the physical particle. From a physics 
standpoint, the momentum vector one seeks is the vector at the vertex of origin of the particle.  The 
problem is that the point of origin can be any of the following: 

� Main interaction vertex 

� A spurious interaction vertex due to event pill-up 

� Secondary vertex 

� Decay vertex 

� A scattering center 

One is thus led to formulate a track reconstruction algorithm which makes no a priori assumption as 
to the origin of the particles: the assignment of the track to a particular vertex of origin must be done 
after the track parameters have been determined.  Viewed as an object, the track thus consists of a 
collection of points acquired or found with the appropriate algorithm, a parameterization of the track 
based on a fit of the data points to a model or template, and a vertex of origin. Properties such as the 
momentum (modulus or vector), and the particle identity are then calculated afterwards on the basis of 
the track parameters, and the known position of the vertex of origin. Note that, one can make 
assumptions about the vertex of origin, and include it in the fit for the determination of the track 
parameters after the fact, i.e. after it has been associated with the track.  

One is then left with the core of the problem: finding the tracks, and fitting them to the chosen (and 
hopefully appropriate) track model to eventually deduce the particle final state. It thus appears natural 
to define a “tracker” entity whose purposes are  

� To find the tracks based on a store or bank of hits reconstructed within the relevant detectors.  

� To fit the hits using a suitable track model.  

� To enable association with a vertex of origin and optionally allow a refit of the data including 
the vertex of origin.  

� To calculate the final state particle information.  

 
 
The virtue of a Kalman Filter approach is to integrate in an efficient and compact way both the 
finding and fitting steps. One must however pay attention to “some” details...  

In a detector such as Star, the track reconstruction in the TPC, SSD, and SVT, naturally proceeds 
from the outside to the inside. Track densities on outer layers of the TPC are smaller than on the inner 
layers, there is thus much less ambiguity in forming and following tracks.  The Kalman approach 
enables to progressively use the points available to refine the knowledge of the track parameters, and 
extrapolate (follow) the tracks inward.  The calculation of the track parameters and the extrapolation 
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from layer to layer shall proceed according to the canonical Kalman filter algorithm described here.  
The finder however needs a sensible seed before it can proceed in finding tracks.  

Given that the number of hits in the STAR detector can be rather large for a central Au+Au collision 
event, it is imperative one implements a hit data store which enables fast and efficient retrieval of the 
relevant points. The key word is relevance. The finder shall not have to iterate on all data points to 
find sensible candidates for the continuation of tracks. One should thus define a measured hit/point 
data store, which enable point retrieval based on a layered, coarse grain pixelization of the detector.  

Additionally, given that as one follows the track into the inner TPC sectors, or the SSD and SVT, 
ambiguity may arise as to which point is best to add on a particular track. It may thus become 
appropriate to fan out the tracks and follow multiple leads concurrently.  

The extension of tracks from the TPC to the SVT (or backward) across structures such as the inner 
field cage of the TPC raises the important issue of effects caused by multiple scattering and energy 
losses. Given that much of the particles detected by Star have low momenta, it is critical to include 
these effects properly in the propagation and fit of the tracks. We shall adopt much of the work done 
for the Alice detector by K. Safarik, and Y. Belikov. 

The components, minimally needed, can be summarized as follows 
� Hit entities that encapsulate the position, error, energy loss, or deposition of track in detector 

components.  

� A hit container providing polymorphic hit data storage and ultra fast retrieval of hits based on 
a hierarchical, layered, coarse grain representation of the detector.  

� Abstract track, which define the notion of track.  

� Concrete Track entities implemented following the chosen track model to hold reference to 
hits associated with the track, and with accessor and modifiers properties to set and get the 
physical properties of the track.  

� A track container providing polymorphic track storage and fast retrieval based on various 
sorting algorithms needed, for instance, in the analysis of track merging.  

� Abstract Track Finder defining the notion of tracker.  

� Concrete Track Finder implementing the Kalman track finder developed in the context of this 
project.  

� Abstract track seed finder defining the notion of track seed finder.  

� Concrete Track Finder implementing a local seed finder developed in the context of this 
project. 
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3.2 Tracking Algorithm 
 

We have, in the past, explored a number of fitting algorithms for the reconstruction of tracks in a 
complex detector such as STAR. While global search methods based on Hough transforms, or track 
template may be deployed in very elegant, CPU efficient ways, and do well for the reconstruction of 
primary tracks, they typically do rather poorly in the reconstruction of secondary tracks – those 
produced from the decay of short lived particles, or from interaction within the detectors.  Moreover, 
the application of template methods would require, for use with a detector such as STAR, a huge set 
of templates (even if the obvious cylindrical 12 sectors, two halves symmetry of the TPC is exploited) 
and would end up requiring a rather substantial memory allocation. Moreover, with such methods, as 
the track finding is completed, one still needs to perform a fit of the tracks that accounts for energy 
loss and multiple coulomb scattering effects. We have thus opted for a more conventional approach 
based on a Kalman filter.  

We first describe the general track finding 
strategy in section 3.2.1. The track search and fit 
algorithm is summarized in Section 3.2.2.  The 
track model, and the specifics of the Kalman 
finder/filter/fitter are presented in section 3.2.2. 

 
3.2.1 General track finding strategy   
 

The methodology used for the track 
reconstruction is basically that of a “Kalman road 
finder”: given an existing segment of a track, use 
the knowledge provided by this segment, to 
predict and estimate where the next point on a 
track might be; once you got there, use the new 
point to update the knowledge of the track. 
Overall, the approach can thus be qualified as 
localized in space, or simply “local” by opposition 
to the global search techniques alluded to in the 
introduction of this section.  

 

(Global) Track Finding/Fitting

Copy tracks to StEvent 
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex 
Using StEvent

Copy extended tracks to 
StEvent as “Primary” Tracks

Load Hits

(Global) Track Finding/Fitting

Copy tracks to StEvent 
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex 
Using StEvent

Copy extended tracks to 
StEvent as “Primary” Tracks

Load Hits

 
Figure 3-1 General Track Reconstruction Strategy. 
Sequence of tasks involved in the track 
reconstruction. Note that the main vertex is outside 
the scope of this project. 

STAR uses the notions of global, primary, and 
secondary tracks. Primary tracks are those 
emanating directly from the main collision vertex 
whereas secondary tracks are produced by decay 
or interaction of primary tracks within the 
detector. The finite resolution of the track 
reconstruction, and kinematical focusing of decay 
products concur to render the distinction between 
many secondary and primary tracks rather 
difficult. STAR thus first analyze all tracks as if 
they were secondary tracks, and do not include 
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the main collision vertex. One then search for the fraction of those that present a good match with the 
main collision vertex and can be labeled as primaries. The tracks obtained in the first pass are labeled 
“global tracks” and are fitted without a vertex. The primary tracks are extension of the global tracks 
including the vertex: their fit includes the vertex.   Note that STAR maintains a double list of tracks 
consisting of global and primary tracks, where tracks that match the main vertex appear twice - once 
as global and once as primary. It is thus possible to save to disk, the track parameters with and 
without the primary vertex for further analysis of V0s and other decay topologies.   

STAR uses an event model called StEvent. This event model also contains a track model called 
StTrack. As we started to develop this new tracker, we felt the STAR StTrack model did not provide 
the flexibility and efficiency need for this tracker, and we thus designed and implemented a new track 
model for within this tracker. Given that much of the existing STAR C++ code already use the 
StTrack model, we concluded it would be simpler to keep the existing track model for i/o purposes 
while conducting the track search with the StiTrack model. This implies that once StiTrack tracks 
have been found, they must be copied into the StEvent format.  

The track search and event reconstruction algorithm, shown schematically in Figure 3-1, proceeds in 
basically five steps. The first step consists in the actual track search and is described in the following 
section. It produces “global tracks”, in the STAR jargon, i.e. tracks with no associated vertex.  Those 
global tracks are then copied into the STAR event model StEvent/StTrack by a call to a filler helper 
class method. The main vertex finder is called next (with StEvent as argument) to find the vertex of 
the event. If a vertex is found, the Kalman vertex finder is called, once again, to attempt an extension 
of all found tracks to the main vertex. The event filler is then call once more to copy the newly found 
primary tracks, i.e. those tracks that were successfully extended to the main vertex.  The track 
reconstruction is then completed. 
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Figure 3-2 Track Search Algorithm 
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3.2.2 Track Search and Fitting Algorithm 
 

The track search and reconstruction algorithm is illustrated schematically in Figure 3-2. The search 
uses a Kalman road finder, and proceeds, in a loop, sequentially, track by track until no more tracks 
are found. No correlations between tracks are considered although hits may initially belong to more 
than one track.   

The search for each track is initiated with a call to a Track Seed Finder. The search stops when the 
seed finder returns no seed. Track seeds are short track stubs consisting of a sequence of a few hits. 
As such, they carry just enough information to enable a very rough estimate of the track position, 
direction, and curvature. This rough estimate will be used the Kalman finder to begin the extension 
and search of the track through the detector.  Seeds returned by the seed finder are not confined to any 
specific region of the detector. Given however, it is easier to find reliable track patterns in a low track 
density environment, the search for seeds proceeds, in the STAR detector, from the outside in. So, 
typically the seeds returned are towards the periphery of the detector.  The Kalman search that follows 
thus first proceeds inward. The algorithm of the seed finder is discussed in more details in Section 
3.2.3.  

The Kalman-search proceeds through the virtual layers of the detector, step by step.  It is considered 
complete when the search reaches the inner most volume, or when a prescribed minimum number of 
active detector layers have been crossed without finding matching hits.  The mathematical details of 
the Kalman search and fit are described in Section 3.2.7. The Kalman finder uses the direction and 
curvature of the existing track stub to estimate (extrapolate) the position of the next track hit on the 
next available layer.  

Matching hits are then sought on that layer within a radius of confidence determined by the error 
parameters of the track. If no matching hit is found, the given layer is skipped. If one or more 
matching hit candidates, one calculates the increment of track chi-square caused by the addition of the 
candidate hits. Candidates are deemed acceptable if the chi-square increment is smaller than a 
prescribed (user settable) maximum. If more than one candidate hit satisfy the chi2 requirement, one 
selects and add to the track the hit with the lowest incremental chi-square value. Once a hit is added, 
the track parameters (i.e. curvature, direction, etc) are updated using the Kalman track model 
discussed in Section 3.2.6. As the track-search proceeds inward and eventually reaches the inner most 
detector volume, the track parameters are progressively refined and précised.  The Kalman parameters 
(including the chi-square) of the track at the last hit are the best estimator of the track.  

Given that the track search initially proceeds on the basis of a seed that may not lie at the very edge of 
the detector, it is possible that the track found after the inward pass might be incomplete. One thus test 
whether the outmost point on the track is sufficiently far from the edge of the detector that points 
might potentially be added to the track where a search conducted in that part of the detector.  The 
search is considered complete if a number of points smaller than a prescribed minimum could be 
added. It otherwise continues. The continuation of the track outward proceeds similarly to the inward 
pass. Successive virtual layers are search step by step for additional hits, and the track parameters are 
updated at each step. Note however that in order to initiate the outward pass, an outward refit of the 
track is first performed in order to update the track parameters of the outer most node of the track.  
The fit is performed with the same machinery (methods) than those used by the finder. The only 
difference lies in the fact that the hits are already found, so one only needs to update the track 
parameters. The outward search proceeds until the edge of the detector or until too many layers have 
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been crossed without association of hits on to the track. The same threshold is used here as for the 
inward pass.  

If an outward pass is performed, and once completed, the track parameters of the inner track nodes 
can be considered under constrained since not all hits on the track were used to calculate the track 
parameters for those nodes. An inward track refit is thus accomplished.  

If an outward pass is not performed, the track parameters of the outer nodes can also be considered 
under constrained. An outward final fit is thus conducted. This fit is deemed necessary to provide best 
track parameter knowledge on the outset of the track, which may then be used by user analyses for 
extension of the tracks to non-tracking detectors such as, in STAR, the CTB, the TOF, or the EMC.  

 
3.2.3 Track Seed Finder 
 

The seed finder is responsible for finding some portion of a track given a collection of hits. The track 
segment thus found is then passed to the actual finder, which extends the tracks through the entire 
detector volume. The role of the seed finder is critical: it must enable the recognition of primary, 
secondary, low, high momentum tracks without tracks without biases.   

Many track pattern recognition algorithms exist.  These algorithms can be separated roughly into 
global and local algorithms.  Global algorithms (sugh as Hough transforms, neural nets, etc) tend to 
be O(N^2)  algorithms, where N is the number of hits.  Local algorithms tend to be much better, 
O(N).  Further, a local algorithm lends itself to Kalman filtering.  We have thus developed a local 
seed finder. The charge of ITTF requires enabling easy upgrades or test of other algorithms. We also 
considered that optimization of the tracker might require multiple techniques be used for seed finding. 
We thus adopted a design where multiple seed finders could be used sequentially. In essence, all seed 
finders to be used shall derive from a base class defines the notion of seed finding. A composite seed 
finder class, which consists of a container of send finders, is then use to broker the actual finders in 
doing the seed finding work.  

We have implemented a local seed finding approach that goes by the name of “road finder” or “follow 
your nose” tracker.  Essentially, it identifies two points that are close in position space.  From these 
two points it extrapolates to another layer using a straight-line trajectory.  At the next layer it adds 
another hit and then moves on.  The process continues until the seed is either a user specified 
minimum length (number of hits) or aborted.  Fast circle (in the plane transverse to the field) and 
linear (path length vs. z plane) fits are used to estimate the parameters of the track, and initialize the 
Kalman state passed on to the Kalman track finder. The seed finding process is iterated until all hits 
have been visited.   

 
3.2.4 Conceptual Detector Model 
 

The Kalman filter tracker developed in this work implicitly requires the knowledge of the location, 
size, orientation, and material composition, of the detector components, and other material structures 
present in, or near, the fiducial volume where charged particle trajectories are measured. It is 
necessary to account for the finite density and thickness of the materials traversed by particles to a 
local basis: one needs to know, at each track step, what volume are crosses, to determine an estimate 
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of the Kalman process noise (MCS) and energy loss. Because STAR is a detector in somewhat 
constant evolution, and because we felt it would be interesting to consider the applicability of this 
tracker to other experiments, we decided it would be appropriate to generate an abstract model to 
describe the detector geometry rather than hard coding the necessary material information. 

 
Figure 3-3 Cut away view of the STAR detector 

 

The STAR detector, illustrated schematically in Figure 3-3, features a rather simple cylindrical 
geometry. The central detectors, which is the primary focus of the tracker developed by the ITTF 
group, features a discrete azimuthal symmetry, and a rather simple radial ordering of detector 
components.  Such a simple geometrical structure suggests one can account for the presence of 
scattering materials within the detector while maintaining a rather simplistic, and coarse model of the 
detector. Essentially, our aim is to avoid using the GEANT geometry model, which although well 
proven in the business of detector simulation, implies a rather high CPU cost for the propagation of 
tracks across the detector volumes. We thus initially formulated a simplified geometry model whereby 
the detector components are organized in radially concentric virtual layers. In this model, the virtual 
layers may themselves be segmented azimuthally and longitudinally. This model readily 
accommodates the STAR central detectors and may also be adapted to model the forward detectors 
(such as the FTPC). For modeling of the forward detectors, one substitutes the z-axis to the radius and 
model the forward tracking planar detector components to be perpendicular to the beam direction.  
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Figure 3-4 Schematic representation of the virtual layers and layer segmentation of a fictitious six-sector 
detector. 

yl 
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As schematically shown in Figure 3-4, the geometry model consists of successive layers locally 
transverse to a depth axis, which can be either radial, as in the case of the SVT, SSD, and TPC, or 
longitudinal as in the case of the STAR FTPC. The layers can be segmented in one or two 
dimensions. In the STAR TPC, each layer is segmented in 12 equal planar partitions azimuthally and 
no longitudinal segmentation is used.  

The geometry model is based on a hierarchically organized system of elementary modules 
representing detector elements or inactive components with the detector fiducial volume. The 
hierarchical organization is achieved by inserting the modules into a smart container. The container 
maintains references to the elementary modules and enables their organization (or sorting) in 
successive layers, with possible segmentations within the layers. The detector module model involves 
a Boolean flag specifying whether the instance represent an active detector volume, whether the 
volume is a continuous medium, such as the gas within the TPC, or a discrete scatter, such as the SVT 
ladders, or the TPC field cage. The volume elements are characterized by a shape, a placement 
(position and orientation), the volume may contain a gas or fluid, and a solid material. Volumes are 
also given a name.   

We have not attempted the same level of generality accomplished in the GEANT package, and have 
restricted the definition of volume shapes to rectangular and circular/cylindrical objects. These are 
sufficient to represents the volumes and constructs within the STAR detector. 
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Figure 3-5 Detector Placement 

The label “g” and “l” stand for global and local coordinates respectively. The placement of a detector 
element relative to the origin is formulated in terms of normal radius, rn, and angle, θn , or in terms of 
the center position rc, and θc. 

 

Rather than having many small successive volumes to represent the various components of rather 
complex such as the SVT, we have found it sufficient to define rectangular volumes (e.g. ladder) that 
involve a large, mostly empty volume, and actual solid components. An SVT component is for 
instance represented as consisting of a rectangular gas volume within which lies a finitely thick 
silicon wafer. The navigation within the detector is thus greatly accelerated because one essentially 
jumps from one critical component to another while simplifying the propagation of the tracks through 
the gas and other continuous volumes. The calculation of the error matrices, in particular, is then 
performed, in a given step, by accounting for both the continuous nature of the material within a 
volume, and the presence, if any, of a discrete scatterer.  

The placement of the detector is achieved with the representation illustrated in Figure 3-5.  The 
“center” of a planar detector is its center of gravity (the midpoint in local x, y, and z).  For curved 
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cylindrical or conical sections) detectors, the “center” is the midpoint in z, opening angle, and radial 
thickness. The “normal” coordinates give the magnitude and azimuthal angle of a normal vector from 
the global origin to the plane of the detector.  The plane of a planar detector is simply the one in 
which it lies.  For a curved detector, the plane is the one that contains the tangent to the curved section 
at its center and is normal to the transverse projection of the radial vector from the origin to its center.  
Note that these definitions all assume that the plane of the detector is parallel to global z.  The third 
“normal” coordinate gives the location of the detector center along the detector plane in the azimuthal 
direction (i.e., local y).  This representation is best for the Kalman local track model. The “center” 
coordinates are a little more natural and are best used for rendering and radial ordering.  Here, the 
magnitude and azimuthal angle of a vector from the global origin to the center of the detector are 
given, as well as an orientation angle.  The orientation angle is the angle from the vector above to the 
detector plane’s outward normal. It is 0 for detectors that have xOffset==0 when setting the values, 
one must set all 3 for a representation at once. The layerRadius is independent and is used for 
ordering detectors in R. 

The information required for materials include their density, and their radiation length thickness. It 
also is convenient to label them with a name. Other data used in GEANT are not necessary since one 
does not actually consider interactions of the tracks in the media other than multiple Coulomb 
scattering and energy loss.  

 
3.2.5 Conceptual Hit Model and local reference frame 
 

Hits are measured in the local detector reference frame defined in the previous section. We assume 
the hit information determined by the detectors include a 3-D position, a full error matrix (or at least 
an estimate of the error matrix), the deposited energy, and a reference to the detector where the hit 
was produced.  A translation to global coordinates must also be possible.   

 
3.2.6 Conceptual Track Model 
 

The track search is conducted within a local coordinate system, i.e. a coordinate system attached 
(local) to the detector components traversed by the track. For operation within STAR, we assume the 
magnetic field is perfectly constant and axial. This assumption could however be relaxed by the 
simple addition of a field map were the field found to have significant variation over the volume of 
the detector fiducial region.  Charge particles are thus assumed to travel along helicoidal trajectories 
with a radius (and all other parameters) that may vary due to interactions and energy loss.   
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Figure 3-6 Local Track Model 
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The track model and its parameters are illustrated in Figure 3-6. The x-axis is used as the independent 
variable to measure the position of the hits from the origin of the reference frame. The detector 
components are assumed to be in the “yz” plane as illustrated. Parenthetically, we point out that 
having hits measured in a plane perpendicular to the independent variable simplifies and greatly speed 
up the calculation of residues.  

At any given point along the track, the helix can be characterized, in the local reference frame, by 
stating the position of the center of the helix  (x0, y0) in the plane transverse to the B field, a reference 
position z0, the curvature of the track, and the pitch angle λ.  Alternatively, given that y0, and z0, are 
not directly measured but must be inferred from measurements, using  

( )
( )η
η

λ −+=

−−+=
− Cxxzz

Cxxyy

C

C
1tan

0

2/121
0

sin)(

)(1)(  

 16



It becomes more advantageous to characterize the state of a track at given value of x, using x0 (which 
must also be inferred), y(x), measured directly as the position of the hit along the “pad plane” 
direction, and z(x), measured directly along the B field direction, the curvature of the track, C, and the 
pitch angle λ.  For computational purposes, it is actually more convenient to replace “x0” by a related 
quantity, η, defined as η=C x0.  The state vector of a track at any given position “x” is thus 
represented as: 
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3.2.7 Kalman Search and Fit Algorithm 
 

The Kalman track search and fit algorithm is schematically illustrated in Figure 3-7. It uses the track 
model presented in section 3.2.6. The search begins with a given track seed and proceeds iteratively 
with the addition of successive points. The seed may consist of an arbitrary number of hits as long as 
it is possible to calculate, from those hits, a reasonable estimate of the track parameters or Kalman 
state vector.  Essentially, the search proceeds by first extrapolating the existing track to the next 
volume, search for possible matching hits in the vicinity of the extrapolation, calculate the 
incremental chi-square associated with the addition of points, select and use the best hits (lowest chi-
square) to update the track Kalman state vector at the new hit position, and repeat iteratively.   

The extrapolation of a track to a new location is done in two steps, and is driven primarily by the 
detector geometry. Given a hit (and its parent detector component), one must first find which detector 
element is susceptible of holding the next hit on the track. Currently, one assumes the track is either 
moving inward or outward, so one scans all detector/volume elements below (or above) that could 
host the next hit. Note that we plan to modify the volume scan as to permit successive hits on a track 
to be within the same virtual layer. The scan is done using a fast extrapolation to the center (in x) of 
the candidate volumes. One then selects for further inspection those volumes in which the 
extrapolation fall within or near the perimeter (in the yz plane) of the active region of the detector and 
volume. Note that the extrapolation falls well within the volume of a non-active volume (e.g. the TPC 
field cage), the scan for hits is skipped, and a no-hit node will be added to the track. The track current 
position will next be updated to reflect the new position, but the curvature, η, and tanλ are not 
changed given no new information is available. The Kalman track error matrix will be updated to 
account for the track propagation through the current volume. Once the next detector is found, one 
uses the current track state to predict the track position (x,y(x),z(x)) in the measuring plane of that 
detector.  The prediction is based on the following expressions: 
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The predicted position is then submitted to the hit container to query for hits in that detector that may 
lie with a calculated search radius of the position. The calculated search radius is a function of the 
estimated track error, and scaling factor preset by the user. Note that lower and upper bounds are 
imposed on the calculated search radius in order to avoid pathological behaviors.  

The hit container returns a list of hit candidates. If the list is empty, one treats the volume as a non-
active volume; a no-hit node is added to the track, the track is propagated to the new position, and the 
error matrix update to account for scattering within this detector. If the list contains one or more hits, 
one iterates through all hits to calculate the incremental chi-square caused by the addition of the given 
points to the track. The hit with lowest incremental chi-square is selected as the best candidate. One 
then verifies the incremental chi-square is smaller than a preset maximum. The preset maximum is 
determined at run time, from user or external input. If the best candidate does not pass the maximum 
chi-square criteria, the detector volume is treated as inactive, and a no-hit node is added to the track. 
If the best hit candidate satisfies the criteria, the hit is inserted in a track node, and the track node 
added to the track. One then proceeds to update the track Kalman state at that node.  The state update 
is calculated using the following expressions: 

ii

ii

ii

ii

ii

CC

xfzz
xfyy

λλ

ηη

tantan

)(
)(

1

1

1

1

1

=
=
=

+=
+=

+

+

+

+

+

 

Equation 3-1 
 

The track error matrix is updated using the following equations: 

Missing text. 

Once this is completed, the tracking step is complete, and the process repeats with a scan for the next 
detector volume traversed by this track. The search stops when no further detectors are found.  
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Figure 3-7 Kalman Search and Fit Algorithm 
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4 Implementation 
 

4.1 Introduction 
 

We present the general organization (and the motivations for this organization) of the code and 
packages layout in section 4.2. Given the need and requirements for an object-oriented design, we 
designed and developed the code using an object model. The organization, and general structure of 
the object model are presented in Section 4.3. Specific key components of the object model are 
presented in Section 4.4. We note finally that we have made a conscious effort to provide 
documentation within the code although critics will probably (always) consider it insufficient… The 
in-code documentation is accessible through the STAR website DOXYGEN generated documentation 
system. 

 

4.2 Packages Layout and General Code Organization 
 

The ITTF code is partitioned in four modules or packages called Sti, StiMaker, StiGui, and 
StiEvaluator. Sti constitutes the core package and contains the basic components (C++ classes) as 
well as the work classes (e.g. track finder, fitter, track seed finder, etc.) Graphical user interface (GUI) 
components used for the event display and settings of the code parameters in interactive mode are part 
of the StiGui package. Star and Root specific components are found in the StiMaker package. The 
StiEvaluator package provides performance evaluation tools convenient for the development and 
tuning of the code but not essential for its operation in production analysis. For operation within Star, 
the ITTF packages are used in concert with STAR specific (predating ITTF) packages such as 
StEvent, StMcEvent, StMiniMcEvent, StMiniMcMaker as well as the Star Class Library.  
4.2.1 Sti Package 
 

By design, the classes included in the core package “Sti” are meant to be independent of STAR 
experimental specificities such its geometry, and other software components used in event 
reconstruction.  In practice, given ITTF software must be integrated with the STAR mainstream 
software, and to be able to communicate with the existing STAR software components, we have taken 
some license with this rule, and the STI classes do carry some dependencies on other STAR software 
libraries such as the StarClass Library  for use of StThreeVector, StFourVector and other similar 
components. Also, to simplify the development of the code, at least at this stage, some of the Sti 
classes do carry some “hard coded” knowledge of the Star detector and software. Note however that 
as a part of our maintenance of this project, we shall endeavor to eliminate or abstract out those 
explicit dependencies and rely on derived classes implementing a “Builder” pattern to realize the Star 
specificities in this tracker.  

The Sti package is written in standard C++, and has by design zero dependencies on non-Star 
packages. ROOT classes, for instance, are explicitly excluded to avoid, or at the very least minimize 
maintenance problems and dependencies on ROOT.  ROOT classes and components are however 
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used in the Star specific packages StiMaker and StiGui. Containers classes are used proficiently in 
this tracker, and one could have elected to use ROOT containers. We felt however that the adoption of 
ROOT containers would entail dependencies on the entire ROOT environment through the TObject 
base class used in all ROOT classes. We also felt it would be wiser to rely on industry standards for 
such containers and thus make ample use of the Standard Template Libraries (STL) in addition to the 
basic core C++ libraries distributed with most ANSI compliant compilers. We stress that the use of 
templated classes and of STL classes in particular enable a level of abstraction otherwise difficult to 
achieve in ROOT. 

The Sti packages carries limited dependencies on Star software to facilitate the interface with other 
Star software components. Explicit references are made, within Sti classes, to classes such as StEvent, 
StMcEvent, StTrack, and StHit. Although it would be necessary to readily abstract out theses 
dependencies to a Star specific package to render the ITTF tracker truly “universal”, we felt the urge 
and necessity of developing a new tracker for Star in a timely fashion outweighed the need for a 
universal tracker. We have thus included the Star Library classes and some other specific Star 
constructs to leak in our design. 

 
4.2.2 StiMaker Package 
 

As its name suggests, the StiMaker package provides a “maker” to operate the ITTF tracker within the 
Star software environment. It also includes a number of auxiliary classes such Star specific 
operations, and for event display. The StiMaker uses a class called StiDefaultToolkit to instantiate all 
relevant components at run-time based on a restricted number of control parameters.  Such control 
parameters include flags to request operation of the tracker in Event Display mode, and in evaluation 
mode. 
4.2.3 StiGui Package 
 

This package comprises classes needed for the deployment and operation of the event display. The 
classes defined provide the means to display detector components, hits, and tracks.  
4.2.4 StiEvaluator Package 
This package was developed during t 

he initial stages of the ITTF project development to provide a performance analysis of the track 
reconstruction. It has now been essentially replaced by the use of the STAR StAssociationMaker 
framework developed outside of the scope of this project for the determination of reconstructed track 
quality and efficiency. It is still used to provide a coarse evaluation of the tracker performance but it 
should be considered deprecated and it will eventually no longer be maintained. 

 

4.3 Object-Oriented Model 
 

The tracker code was created with an object-oriented design and is based on the algorithm and 
conceptual object model presented in Section 3.2. The developed C++ object model involves a large 
number of classes that can be, roughly speaking, organized in a tier system as illustrated in Figure 4-1. 
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The model includes a number of abstract classes (some of which are pure abstract but not all are) used 
to define the interface to the object and constructs used in this project. However, we did not strive to 
define a pure abstract class for all constructs used in this tracker. This point is elaborated in 
Section4.3.1. Elementary and utility classes, part of the first tier, are described in Section . Data and 
geometry entities used by the tracker are briefly described in Section 4.3.2. Simple functors, helper  

and convenience classes 
developed for the purpose of 
simple calculations, and filters, 
constitute the second tier family of 
classes and are described in 
Section X.  The code makes ample 
use of simple and containers and 
some “smart” containers. These 
are discussed in Section 4.3.5. 
Object factories, used to simply 
the choice of object type, handle 
memory allocation, and speed up 
access to large numbers of “small” 
objects are described in Section 
4.3.6. The actual tracking, and 
fitting is part of the fifth tier 
family of classes developed in this 
project. The key classes are 
presented in Section 4.3.7 Given 
the multiple components used in 
this code, and in view of the complexity of the interdependencies, and relationships, a toolkit was 
developed to handle the instantiation of the key major components of the system. It is described in 
section 4.3.7.1.  

 

Figure 4-1 Tier structure of the tracker code. See text for details.
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1 : Data and Detector Model Entities 

0 : Elementary Tools and Utility Classes 

 
4.3.1 Abstract vs. Concrete Classes: Plug-and-play Model 
 
The Sti package contains a mixture of abstract and concrete classes. Although one should ideally first 
define and separate abstract classes from concrete and work classes, such a level of abstraction was 
not systematically pursued as it somewhat detracted from the main goal of this project i.e. the 
development and deployment of a fast and efficiency track reconstruction code in a timely fashion. 
Yet, the need for easy maintenance, and upgrade-ability prompted us to define a number of abstract 
interfaces so one could easily substitutes new components to those nominally developed in this 
project. Examples of such abstract classes include StiTrack, StiTrackFilter, StiTrackFitter, 
StiTrackSeedFinder., and StiTrackFinder.  Pure abstract classes were however not deemed necessary 
for entities like hits and detector elements, which in this tracker actually are actually quite simple.  
Classes such as StiHit and StiDetector are not pure virtual, and thus define the accessors, as well as 
the data members of hits and detector entities.  
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We recognize that the generalization of this tracker might potentially benefit from a higher degree of 
abstraction through the use of pure virtual classes, but we nonetheless deem the current package 
sufficiently general to be usable by many other experiments.  

 
4.3.2 Tools and Utilities 
 

A number of tool and utilities were created to facilitate the development and provide support for high-
level operations. A messenging system, described in Section 4.3.2.1 was developed for i/o of 
debugging, informational and error messages, internally by the code. The system provides multiple 
concurrent streams whose output level can be set, at run-time, by the user, in order to select what 
messages, and which components of the system should issue on-screen readable messages.   

 

4 . 3 . 2 .1  MESSAGING SYSTEM 

A large, multi-developer project like ITTF needs a robust & flexible way of passing & filtering 
messages to the user. Especially during development, it is critical that each developer sees debugging 
information related to his or her code without being distracted by irrelevant output. A flexible 
messenging system was thus developed to allow in-code user-settable i/o characteristic for debug, 
informational, and error messages produced internally. The messaging system consist of 3 classes: 
MessageType, Messenger, and MessengerBuf. 

MessageType :  Various types of messages are defined in MessageType.h & MessageType.cxx. Each 
type of message defined corresponds to exactly one static MessageType object. Each MessageType 
holds a pointer to the output stream where messages of that type should be sent.  

Messenger : The Messenger class takes care of message routing. It is a subclass of ostream. 
Messengers may be constructed by the user, and each Messenger contains a routing bitmask. Each bit 
in the mask corresponds to one MessageType, and so the Messenger may send messages 
corresponding to multiple MessageTypes. There is also a static routing mask in the Messenger class, 
which indicates which MessageTypes are allowed at all. (All others are ignored.) The instance & 
static routing masks are ANDed to determine which MessageTypes are output. The usage is is shown 
in Figure 4-2. 

MessengerBuf : MessengerBuf does the low level work of the Messaging system. It subclasses 
streambuf and overrides streambuf:: overflow(int). This is the method that actually outputs characters 
to a device or file when the internal buffer is full.  

// This must be called before using the Messenger system.  It sets the global 
// routing mask to allow only output of messages related to hits. 
Messenger::init(MessageType::kHitMessage); 
 
// gets the message type object for hit-related messages 
MessageType *pHitType = MessageType::getTypeByCode(MessageType::kHitMessage); 
 
// redirects all hit-related output to a file. 
pHitType->setOstream(new ofstream(“hit.txt”)); 
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// retrieves a messenger which should output to 2 message streams 
Messenger& messenger1 = *(Messenger::instance(MessageType::kHitMessage |  
                         MessageType::KTrackMessage); 
// retrieves a messenger which should output to 1 message stream 
Messenger& messenger2 = *(Messenger::instance(MessageType::kNodeMessage); 
 
// since the global routing mask & the mask for the messenger each contain 
// kHitMessage, this outputs to the file “hit.txt” 
messenger1 << “hi” << endl; 
 
// since the global routing mask & the mask for the messenger have no overlap, 
// this does nothing. 
messenger2 << “bye” << endl; 
  
// this should be called when done with the messenger framework. 
Mesenger::kill(); 

 
Figure 4-2 Usage example of the Messenger system. 

 
 

4 .3 .2 .2  SUBJECT/OBSERVER MODEL 

A project of the magnitude of the ITTF package has to address the following question, “How do we 
control the entrance and dissemination of information (e.g., run-time parameters) to a software library 
of such a large size?”  We addressed the issue by first creating a single point of user interaction and 
second by enforcing a strict pattern for object communication.  Thus, all run-time parameters are 
controlled by a single party, StiIOBroker.  By various implemenation strategies, these parameters can 
be entered either interactively in a ROOT macro or picked up dynamically from a database, 
depending on a users choice.  When new information is passed to the IOBroker, it guaruntees that 
objects that depend on that information are properly notified. 

The communication pattern is an implementation of the Subject/Observer pattern, one of several 
standard methods for object communication.  The Subject/Observer pattern defines a one-to-many 
dependency between a single subject and many observers.  A subject is responsible for notifying its 
observers when its state has changed.  An observer is responsible for requesting specific information 
from the subject when the subject notifies the observer.  This type of pattern is used to implement the 
relationship between a cell in a spreadsheet and the many charts, graphs, and calculations that depend 
on the information in that cell.  The pattern is implemented in two classes: Subject and Observer.  
Multiple-inheritance is used to couple an object with one (or more) of these classes.  For instance, the 
class StiIOBroker inherits from the Subject class, and many classes such as StiTrackFinder and 
StiSeedFinder inherit from the Object class.  Then, when run-time information is passed into 
StiIOBroker, it notifies all of its observers and they call back to get the necessary information that has 
changed.  This is an extremely simple pattern that allows for complicated communication patterns, as 
any object can be both a subject and an observer.  Re-use of the pattern has proved extremely easy, 
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thus justifying the choice of the Subject/Observer pattern over other possibilities such as the “Token” 
or “Memento” patterns. 

 
4.3.3 Data and Geometry Entities 
 

The event reconstruction process involves hits, track candidates, track segments, fully reconstructed 
tracks, detector elements, etc.  These constructs are considered as data and geometry entities given 
they carry information about the reconstructed data as well as the detector geometry. Simplified class 
diagrams of these data entities are shown in Fig. X through x’. They form the first tier of the 
components developed in our tracker.  

 

4 . 3 . 3 .1  DETECTOR AND GEOMETRY MODELING 

The Sti classes involved in the modeling of the detector include : StiDetector, StiMaterial, 
StiPlacement, StiShape, StiPlanarShape, StiCylindricalShape, and StiConicalShape. A drawable 
version of StiDetector is available in the StiGui package. StiDetector is the master geometry entity. It 
holds pointers to placement, shape, and shape objects, and as such encapsulates all geometry and 
material notions required for the track reconstruction with a Kalman filter.  

 

4 . 3 . 3 .2  HIT  MODELING 

The hit modeling required for track reconstruction purposes, as described in section 3.2.5, is rather 
simple. It is implemented through the use of a single class called StiHit. No explicit detector type 
distinctions are made, although each instance of the StiHit holds a pointer reference to a detector 
object. 

 

4 . 3 .3 .3  TRACK MODELI NG 

The modeling of tracks involves a number of classes represented in Fig.  

The abstract class StiTrack defines the notion of track and provides abstract (pure virtual) methods to 
set and get the properties of the track. At variance with the StEvent/StTrack model, we have opted to 
have the tracks handle all their properties without the help of an ancillary track model class. It is thus 
possible to query a track objects for its kinematical properties such the 3-momentum, the transverse 
momentum, the rapidity, as well as hit information.  

Two concrete classes, StiKalmanTrack and StiMcTrack are used to handle reconstructed and Monte 
Carlo tracks respectively. They are both derived from the StiTrack abstract base class.  The 
StiKalmanTrack class has been designed to accommodate a complex track model, one in which tracks 
may consist of simple sequences of points, or more complex tree-like structures allowing multi-paths 
searches starting with a common trunk. The StiKalmanTrack represents the tracks internally using 
StiKalmanTrackNode instances discussed below. A given StiKalmanTrack instance, a track, holds a 
pointer to the first and last nodes on the track, and can access through these all other node/hits on the 
track, thereby obtaining track parameters such as the Kalman state vector (see Section 3.2.6), the 
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momentum, rapidity, etc. The StiKalmanTrack implements “fit()” and “find()” methods that delegate 
the search (meaning extension of the existing track) and fitting of a track using a delegate pattern. An 
instance of the StiKalmanTrackFinder class is called to carry the track search and extension, while the 
“fit()” method delegates the fit to the StiKalmanFit class. Note that both these classes, as well as the 
StiKalmanTrack class further delgate many operation to the StiKalmanTrackNode class which carries 
the actual data about the track at any given point on the track.  

The StiMcTrack class was to define to enable operation on Monte Carlo tracks internally within the 
Sti environment. This class is useful in particular for use in combination with the event display where 
Monte Carlo and and reconstructed tracks can be overlaid thereby permitting tuning or further 
debugging or development of this tracker. The StiMcTrack is derived from the StiTrack class and thus 
enables polymorph use of StiTrack containers and operations. In order to avoid a full deployment of a 
Monte Carlo class, the StiMcTrack class is implemented as a wrapper class around the 
StMcEvent/StMcTrack class. It uses the “façade” pattern to provide access to all the parameters of the 
actual StMcTrack but with an interface which common to StiKalmanTrack instances.  

An abstract base class StiDrawableTrack is defined to provide drawable functionality. Concrete 
classes StiRootDrawableKalmanTrack and StiRootDrawableMcTrack are derived simultaneously 
from the StiDrawableTrack and respectively the StiKalmanTrack and StiMcTrack classes to 
implement drawable Kalman and Monte Carlo tracks.  

The StiKalmanTrackNode class is the workhorse of this tracker. An instance of this class carries a 
representation of the track at a given position. As such its data members  include the “x” position of 
the node, the Kalman state of the track at this node (see Section 3.2.6 for a definition of the track 
model),  a pointer to a hit (possibly null if the track node is within a non active volume acting as a 
scattering center), a pointer to a parent node, a vector of pointers to children. A node without a parent 
is the first hit/node on a track. A node without children is the last node on a track. Currently the 
implementation of the tracker allowes for only one child at each node, but the use of an STL vector to 
carry the children nodes shall allow an extension of this tracker where a tree-like track model is used. 

Simple tasks such as track filtering, the calculation of hit errors, or track energy loss, are delegated to 
helper “specialty” classes such as StiFilter, StiDedxCalculator, etc. Some of these specialty 
calculations are implement in fully articulated classes (e.g. StiDedxCalculator), other necessitate 
simple functors only (HitErrorCalculartor). The list of such specialty classes are presented in table X 
and Y. A number of mundane tasks related to geometry transforms and material interactions have also 
been implemented as static methods of the StiGeometryTransform and StiMaterialInteraction classes. 
These form the second tier components of the system. They are discussed in Section 2b of this 
document and online as part of the DOXYGEN auto-generated documentation. 

 
4.3.4 Functors, Calculators, and Filters 
 

4 . 3 . 4 .1  TRACK FILTERS 

Track produced by the seed finder and the Kalman Track finder must be filtered to eliminate low 
quality or irrelevant tracks. Filtering is also used with the event display to select the characteristics of 
tracks to be shown and for comparative analysis of reconstructed and Monte Carlo tracks. The notion 
of track filter is defined in an abstract class called StiTrackFilter. This filter class provides methods 
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and data members to count and keep track of the number of tracks analyzed, and accepted by the 
filter. User code should call the filter method of the filter which internally calls an “accept(track)” 
method and keep an account of the number of tracks analyzed and accepted. The StiTrackFilter is 
pure virtual and does not implement the “accept(track)” method. The implementation is left to derived 
classes.  

The track filtering is a process that must be fast and flexible. One should also be able to change the 
number and nature of filtering cuts applied dynamically at run-time.  Indeed, we often track an event, 
change the filter criterion, and re-track the event graphically to study the effects of different track 
cuts.  Two competing approached have been used for the implementation of the filter. Both are briefly 
discussed below.  

StiDynamicTrackFilter :  

 

The class StiDynamicTrackFilter is design as a composite filter, a filter consisting of a list of 
elementary filters.  An instance of StiDynamicTrackFilter is initially a null filter. User code can 
however be used to add elementary filter instances to the container. As filters are added the composite 
filter becomes increasingly selective. StiDynamicTrackFilter implements the observer/subscriber 
pattern for object communication.  Thus, any change in StiIOBroker is properly propagated into the 
filtering mechanism. 

StiSimpleTrackFilter :  

 
The class StiSimpleTrackFilter inherits from the StiTrackFilter base class as well as the Parameters 
class. The Parameters class features a “Parameter” container, and accessor to iterators enabling 
navigation through the container. The Parameter instances can thus be iterated through and used as a 
basis for making decisions on the acceptability of the track.  

 

4 . 3 . 4 .2  PARTICLE IDENTIFICATION 

One of the primary methods of identifying charged particles in the STAR experiment is through the 
signature of energy deposition in the detector medium per unit length (dE/dx), using the Bethe-Bloch 
relation. The particle type of the track is then established as the particle type that yields the theoretical 
dE/dx value closest to the experimental value. The full calculation of this information from data is a 
detailed and difficult process; however, using basic approximations the dE/dx can be estimated at the 
tracking stage. 

The most accurate method of calculating the dE/dx uses energy loss corrected for interactions in non-
active media and path length calculated through a helix extrapolation. The energy deposited in each 
pad of the detector without any correction is immediately known, so a dE/dx can be calculated for 
each layer of the detector in question, and a truncated mean of the values is taken as the first 
approximation. 

The path length of the track in the detector element cannot be established from the hit information 
itself; it requires the fully reconstructed track. Once a track is reconstructed, in principle the path 
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length is also known explicitly. It is sufficient, however, to make a straight-line approximation to the 
track for a first order calculation, as illustrated in Figure 4-3. 

 
Figure 4-3 dE/dx Calculation 

 

The linear approximation (l) to the curved path of a particle in the detector is currently used to approximate 
the path length. This however will be easily fixed after the review. The detector element thickness, t, and 
track dip angle λ, are all that is required. 

depositedEdE =  

))(tan1( 2 λ−+= tl  

Equation 4-1 

Figure 4-4 illustrates the results of the calculation. 

 
Figure 4-4: Reconstructed Monte Carlo track dE/dx versus momentum.  Protons and anti-protons are 
shown in blue, charged Kaons in green, and charged pions in red. 
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4.3.5 Containers and Organizers 
 

We make proficient use of STL containers, as they are very well designed, and very efficient in the 
handling of very large data sets. Yet, STL containers lack the specific semantic value needed in 
handling hits and tracks. We have thus develop classes, which use STL containers “vector” and 
“map” to hold references and organize data objects, such as hits, tracks, and detector elements. 
Examples of such containers include the classes StiHitContainer, StiTrackContainer, and 
StiDetectorContainer.  The class StiHitContainer stores all measured hits in hierarchical fashion and 
enables very fast retrieval of specific hits on the basis, for instance, of their proximity to a given point 
projected as the extrapolated position of a track in a detector volume.  The StiTrackContainer was 
developed to provide hierarchical storage and retrieval of tracks useful in performance analysis – or 
potentially also in two track analyses such as HBT or other correlation analyses.  The 
StiDetectorContainer also provide hierachical storage and retrieval of detector and is used in the 
propagation of tracks through the various detector elements.  These 3rd tier components are described 
online as part of the DOXYGEN auto-generated documentation. 

 

4 . 3 .5 .1  DETECTOR MODEL IMPLEMENTATION 

The ITTF design requirements specify an interactive, three dimensional model of the STAR detector 
that was faster and easier to control than GEANT, but accurate enough to properly account for 
corrections for physical processes such as multiple scattering and energy loss, be developed.  We 
explored and developed several (~5) different design.  In the end, the choice was made to separate the 
model of physical objects (air, kapton, silicon, etc) from the hit information that detectors yield.  Thus 
we arrived at two separate classes: StiDetectorContainer and StiHitContainer.  These two classes are 
separate but maintain a well-defined method of communication, so that one can work in both physical 
space and hit-space simultaneously without introducing a strong coupling between the detector model, 
the hit model, and the track model.  This preserves the charge of writing software that easily 
integrates information from existing subsystems and those to come in future upgrades. 

In the most revised version (stable for more than 5 months) the detector model consists of many 
instances of detector objects (StiDetector) that represent the physical location of a certain type of 
material.  These objects contain the necessary information to calculate multiple-scattering and energy-
loss corrections.  For instance, we represent a given TPC padrow and sector (e.g. padrow 10, sector 9) 
by an instance of StiDetector.  Thus, the TPC is represented by 45*12 StiDetector Objects (we treat 
the east and west sides as one detector.  This is not a priori necessary but it is a strong optimization).  
Other detector elements and scattering centers are treated as well.   

Representing the scattering materials is not particularly challenging.  The real challenge lies in 
organizing them in such a way that navigation through the detector model is robust, fast, and flexible.  
After many different attempts we settled on the choice of an ordered tree structure.  Thus, we separate 
the detector using the following hierarchy: regions, then radius, then azimuth.  This separation takes 
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advantage of the symmetry of Collider detectors and allows for a unique sorting of the detectors, 
which further allows for extremely efficient navigation through the detector model.  Further, the 
ordering is in essence a generalized cylindrical coordinate system in which one can use a unique (and 
extremely efficient) helical track model. 

We first recognize that Collider detectors have two regions of tracking: mid-rapidity and 
forward/backward rapidity.  Specifically, we have SVT, TPC, TOF, RICH, and EMC in the mid-
rapidity region.  In the forward region we have FTPC, BBC, bEMC, and FPD, for now.  Track finding 
and fitting generally happens via progression from outside-to-in (or backwards) in one or the other of 
these two regions.   

Next, for each region we order “layers” by radius.  That is, the radial distance from the origin.  This 
reflects the fact that most detectors can be “peeled” like an onion.  This allows for a simple track 
propagation from one layer to the next.  While we use this fact for optimization, we do allow for the 
occurrence of more than one scattering center at the same radial position (and azimuthal position), so 
we do not oversimplify the problem with the radial ordering.  Finally, we order the elements within a 
given radial layer by azimuth.  

Historically, propagating a track through a detector model is a time consuming process.  Much effort 
went into the optimization of the detector container and the results are fantastic.  Results are based on 
the following test: 

� Randomly choose an outer layer of the TPC (sector and padrow).  Begin swimming inward 
from this element 

� Swim inward from this layer, randomly choosing whether to move in azimuth at each step 
inward 

� Repeat for 10,000 tracks 

For the first version of the detector container this process took ~20 cpu seconds.  After much profiling 
and revision, the current version accomplishes the same process in 0.17 cpu seconds – a tremendous 
improvement! 

The detector model is implemented by class StiDetectorContainer.  StiDetectorContainer essentially 
behaves as  an ordered tree of detector elements of type StiDetector.  The tree structure is 
implemented using class the templated class StiCompositeTreeNode<T>.  Thus, each node has a 
single parent and a variable number of children that are stored in a sorted container of type 
std::vector<StiCompositeTreeNode*>.   

The tree structure is built dynamically at run-time by the pure abstract class StiDetectorBuilder which 
is implemented in a derived class StiCodedDetectorBuilder.  StiCodedDetectorBuilder queries the 
offline database for information and builds each detector element with that information, getting the 
actual StiDetectorObjects from a factory.  The two-level design was chosen to provide a natural place 
for building the detector model from information from other sources, e.g., a geant file.  To do so, one 
simply derives a new class from StiDetectorBuilder and implements the StiDetector* 
getNextDetector() method. 

Navigation of the tree makes use of the aforementioned sorting.  The StiDetectorContainer makes use 
of several iterators, one iterator for each classification of sorting.  Therefore there is an iterator into 
the region (forward/backward or mid-rapidity), into the layer (radial position), and into the azimuth.  
These iterators are of type StiCompositeTreeNodeIterator, which is part of the StiCompositeTreeNode 
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package.  These iterators fulfill the ANSI requirements of a bi-directional iterator, and can thus be 
used for any of the STL algorithms.  Navigation consists of setting the detector model to a starting 
point, specified by either a region, position, and azimuth, or by a StiDetector object.  Next, one moves 
in or out using the methods moveIn() or moveOut().  When either of these methods are called, the 
detector container chooses the element in the next layer that is closest in azimuth to the layer that we 
are propagating from.  Then one dereferences the StiDetectorContainer to get a pointer to the current 
detector element.  One can also move in azimuth using the functions movePlusPhi() and 
moveMinusPhi().   

The main time saving optimization lies within these methods.  Within a given layer, the elements are 
sorted in order of increasing azimuth.  Thus, finding the element closest to a given azimuth is quickly 
performed using the STL binary search algorithm.  If a layer has less then a given number (~15) 
elements in azimuth, the container actually uses a linear search algorithm instead.  However, there is 
an even stronger optimization. 

Because many layers of the detector are so symmetric (e.g., layers within a tpc), a call to moveIn() or 
moveOut() doesn’t necessarily have to do a search to find the element closest in azimuth.  Instead, the 
detector container can check whether the new layer and the old layer have the same symmetry 
(number of azimuthal divisions, angular offset, etc).  If this condition is true, then the detector 
container simply indexes into the container of detector elements.  If a layer has ‘N” elements, then a 
linear search takes time O(N), a binary_search takes time O(log(N)), but indexing into the container 
takes constant time, which is much faster than any type of search.  Because the majority of the time is 
spent swimming in through 45 layers of the tpc, this represents a tremendous savings. 

There is no way that we can reflect the full implementation of the detector model in this document.  
However, we highlight the most important lessons that we learned in the iterative design process. 

� A collider detector is well mapped to generalized cylindrical coordinates 

� A 3-level sorting (which can be easily extended) accounts well for representation and 
navigation through all of the components in (and designed for the future) STAR detector. 

� Strict use of STL containers, iterators, and algorithms shave tens of cpu seconds per event off 
of the reconstruction time. 

A sorted composite tree structure is perhaps the best balance of efficiency and extendibility.  This 
choice was made after testing many different ideas including the following: a many dimensional 
lattice, a STL mutlimap, and a polygonal geometry. 

 

4 . 3 .5 .2  HIT  CONTAINER IMPLEMENTATI ON 

Class StiHitContainer is a container designed to handle a very large number of hit instances (of StiHit 
class), and provide for efficient access to hit subsets within user specified volumes.  It is implemented 
using a mapping between a two dimensional key and an STL container of hits.  The mapping is 
discussed in further detail below.  

There is, in principle, a natural connection between the hits and the detector where they were 
measured. However, for implementation purposes, it is convenient to keep these two entities 
(StiHitContainer and StiDetectorContainer) separate, while maintaining a well defined method of 
communication between the two.  In such a way, one can maintain a HitContainer and 
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DetectorContainer that can exist in different representations.  That is, one can have a hit container that 
is well behaved in local coordinates that map very naturally to the detector model as well as a 
HitContainer that can behave naturally in global coordinates, which do not map naturally to the 
detector model. 

The coordinates of the hits stored are described in StiHit.  It should be noted that the ITTF project 
treats the STAR TPC as if it were 12 sectors, each extending to +-200 cm.  That is, we map hits from 
sectors 13-24 to a coordinate system defined by sectors 1-12.  That way we do not need to make any 
distinction between hits that come from different sides of the TPC central membrane.  This is 
motivated by the fact that the east and west sectors mark a clear distinction in data taking, but that 
distinction is unimportant in pattern recognition.  For more on the nature of the mapping see 
StiGeometryTransform. 

StiHitContainer treats the hits from a common detector plane (e.g., TPC padrow 13, sector 12) as a 
sorted std::vector<StiHit*>.  The hits are sorted via the functor StizHitLessThan.  This functor has a 
binary predicate that orders hits in a strict less than ordering based upon global z value (see above).  
Next, StiHitContainer stores these hit-vectors in a std::map<HitMapKey, std::vector<StiHit*>, 
MapKeyLessThan >.  Class HitMapKey is a simple struct that stores two values: refAngle and 
position, and MapKeyLessThan is a simple struct that defines a strict less-than ordering for 
HitMapKey objects.  These values are described in the class StiHit.  By specifying a HitMapKey, 
then, one can achieve extremely efficient retrieval of the hit-vector for a given detector plane. 

Next we discuss the retrieval of hits from the container.  As stated above, one can gain access to a hit-
vector for a given detector plane by specifying the position and refAngle of a detector (see method  
hits(double,double).  Additionally, one can access the hit-map itself (or at least a const reference to 
it!) via the method hits().  However, StiHitContainer is capable of efficient retrieval of a subset of the 
hits in an event.  This subset can be defined as a subset of the hits from a given detector plane.   

Perhaps it is easier to elucidate via an example.  Suppose, for instance, one is interested in hits 
belonging to TPC sector 12, padrow 13.  Then, this sector/padrow combination can be easily mapped 
to a position and refAngle (see StiGeometryTransform).  In this detector one can always specify a 
‘local’ coordinate system where any hit is then fully described by two numbers: local y and z (see 
StiHit for more inforamtion), where y is the distance along the plane (padrow) and z is the global z.  
Now, suppose one is interested in hits that are within some volume centered at (y0,z0) and bounded by 
+-deltaD in y and +-deltaZ in z.  Then, to retrieve the hits from this volume one must call the 
setDeltaD() and setDeltaZ() methods to establish the bounds.  Then one must call one of the 
setRefPoint() methods.  After this, the container has selected the hits within the specified volume, and 
they can be retreived via the  iterator like interface specified by hasMore() and getHit().  
Alternatively, one can use another method of setRefPoint() that combines all of these steps in one call. 

StiHitContainer must be cleared, filled, and sorted for each event.  A manual call to sortHits() is 
necessary to achieve the most efficient container implementation.  The filling is performed via class 
StiHitFiller, which retrieves hits from StEvent and places them in the hit container.  StiHitContainer 
does not own the hits that it stores. 

 

4 . 3 .5 .3  TRAC K CONT AINER 
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After a track is found, extended, and accepted by the track filter it is put in a track container 
(StiTrackContainer).  The track container is more than a simple container.  It is designed to provide 
access to a subset of tracks similar in some dimension (e.g., curvature, dip-angle, etc.).  This design 
was chosen to ease future implementation of second pass tracking algorithms that would, e.g., 
combine two segments of an artificially split track (merging).  There are O(1000) tracks per event, 
and track-track comparisons are therefore an O(1E6) operation – truly intractable.  However, by 
choosing a subset of the tracks with similar characteristics, one can easily reduce this to an O(100) 
process which is easily accomplished within the cpu limits.  The current track container implements 
this sorting using a STL map, but a beta version is being tested which makes use of a templated home-
brew hash container based on STL implementations.   

We focus here on the hash table implementation, as it will soon replace the current version.  The class 
StiTrackContainer contains an instance of the templated class StiHash<BinKey, TrackVec, 
BinKeyLessThan, TrackBinner>.  That is, one uses the StiHash class which depends on a key, a 
container type, an ordering function for the keys, and a hash function.   StiHash is just like a std::map 
with the addition of a functor that takes care of the hashing.  Thus, one can define a hash function that 
bins tracks of similar characteristics.  To change the way tracks are stored and retrieved (to increase 
efficiency) one need not change the container, merely change the hash function.  Additionally, class 
StiHash provides full bi-directional compliant STL iterators.  Thus, one can quickly separate the 
~1000 tracks in an event into groups of ~10 tracks that have similar characteristics (5 parameters for a 
helix model, and several other cuts based on number of hits, quality of the fit, etc).  Initial timing 
estimates show the beta version of the hashed implementation to be significantly faster than the 
current implementation based on a simple STL map, and well within the timing constraints of the 
project.  We plan to roll out the beta version immediately after the current ITTF review.  At this point, 
we can easily begin to treat any problems (if they exist) with track splitting. 

 
4.3.6 Factories, Memory Allocation, and Object Storage 
 

The analysis and reconstruction of events requires a varying number of objects that are instances of 
hits, tracks, track nodes, and other similar classes, ranging from a few tens in peripheral collisions, to 
many thousands in central Au + Au collisions. This is obviously not a problem given that C++ 
enables dynamic memory allocation and release through the use of operators “new” and “delete”.  It is 
then possible to allocate, on the fly, as many instances of these classes as needed in a given event – 
provided of course, one is not exceeding the boundaries of the virtual memory allocated on one’s 
computer… The constant allocation and deletion of memory needed for “small” objects is however a 
CPU time onerous task.  It is thus wise to avoid repeated multiple calls to the class constructor and 
destructors of these small classes.  

Many workaround this problem exist. We have opted to use a factory/container approach whereby 
objects are allocated and constructed ONCE, kept in a dynamic size container (STL vectors actually) 
and served through a factory pattern. Served objects are considered reserved. The factories are 
initialized with a specified number of object instances when constructed. If requests for objects 
exceed the initial allocation, a specified incremental number of instances are created and added to the 
internal container. Incremental additions can be repeated. One uses the convention that the objects are 
never to be allocated directly by “user code” but must instead be requested through their respective 
factory. The factories feature a “reset” method one calls after the analysis of an event is completed to 
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declare the objects are released and ready to be used for the analysis of the next event thereby freeing 
the existing objects without “destroying” them. The analysis of successive events may then be 
conducted without further and repeated memory allocation. 

We create and distribute objects using the combination of the “factory” and “memory pool” patterns.  
All objects are created and owned by a certain object factory.  When a new object is needed (e.g., the 
track finder needs a new track), the user requests a new object from one of several factories.  The 
factory’s job is to ensure that the object exists, to manage the memory allocated to that object, and to 
ensure that new objects are created in a timely manner.  The factory owns the objects, thereby 
explicitly solving the problem of object ownership.  Thus, nearly all calls to allocate or destroy 
memory for objects exist within the factory class, eliminating the problem of memory leaks.  Because 
the project is transient, we can then “reset” the factories after each event and re-use the same objects, 
further increasing the time efficiency of the code.  The prototype code shows a factor of greater than 
ten in speed compared to standard memory pool implementations.  Further, rigorous testing shows 
that the factory implementation leaks no memory. The factory/pool pattern also offers the obvious 
advantage that it is possible to decide, at run-time, which factory to use and thereby allow for a choice 
of simple base type objects, evaluable objects, or drawable objects for use respectively in production, 
evaluation, or GUI/event display modes.  

Object factories are based on the templated Sti class StiObjectFactory<class Factorized>. We have 
implemented derived classes of this abstract base class for essentially all data and geometry entities 
used in this tracker. That includes for instance StiHit, StiTrack (and its derived classes), 
StiTrackNode, StiDetector, StiTrackFilter, Parameter, etc, etc.  

The factory model consists of several user defined classes and depends heavily on use of the Standard 
Template Library (STL).  There is a three level lineage to the pattern given below: 

 

Figure 4-5 Object Factory Conceptual Class Diagram 

StiObjectFactoryInterfac 

FactoryType I FactoryType II FactoryType N 

StiObjectFacotry

 
This structure was designed for the following reasons.  First, all object management and destruction is 
controlled by the StiObjectFactory base class.  Specifically, it contains a container of pointers to void 
(std::vector<void*>) and necessary run-time parameters to control the amount of memory that the 
factory is allowed to manage.  The derived class StiObjectFactoryInterface is templated.  Thus, all 
user interaction with the factories is interaction with an object of type StiObjectFactoryInterface<T>.  
Templating the class allows for a single implementation of object creation, destruction, and 
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management.  Thus, there is only one block of code to maintain.  We avoid the common problem of 
code-bloat (a compiler related issue in C++ use of templates) by the standard method of storing 
pointers to void with appropriate casting.  StiObjectFactoryInterface enforces a strict interface as well 
as polymorphic use of object factories.  For instance, we make a run-time choice to run in graphical or 
non-graphical mode.  But, the tracker itself doesn’t care about this decision, because it gets objects 
from an instance of StiObjectFactorInterface<StiTrack*>.  If we run in graphical mode, we simply 
create an instance of StiObjectFactoryInterface<StiDrawableTrack*> instead.  Since 
StiDrawableTrack derives from StiTrack, these two can be used interchangeably.  Thus, the difference 
between graphical and non-graphical running consists of one line of code – deciding which type of 
factory to create.  All such decisions are managed by the StiToolKit class.  Finally, at some stage one 
has to actually know what types of objects to create.  This is the reason for the derived classes (above 
represented by Factory Type I, etc).  These are skeleton classes whose only job is to implement the 
function (void* makeNewObject()).  This function makes the appropriate call to operator new.  All 
calls to makeNewObject() happen in the base class StiObjectFactory.  All derived factory types are 
contained in a single file StiFactoryTypes. 

Further information about these 4th tier classes can be found online as part of the DOXYGEN auto-
generated documentation. 

 
4.3.7 High Level Processes 
 

Track seed finding, track finding and fitting, are complex operations or processes, and are, as such, 
handled by complex classes making use of   a large number of subsidiary   classes. We have designed  
the tracker components based on the notion that track seed finding, track search, and  track fitting can 
be considered distinct  tasks or operations. They are described in the next three sub-sections. 

4 . 3 .7 .1  TRACK SEED FINDER 

The seed finding is implemented following the hierarchy illustrated in Figure 4-6. 

 
 

Figure 4-6 Track Seed Finder Class Diagram 
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StiSeedFinder is an abstract base class defining the notion of a seed finder. It provides virtual methods 
hasMore() and nextTrack() which can be respectively be called to find out whether additional seeds 
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are available and to obtain seeds in sequence. StiSeedFinder is an abstract class and as such only 
provides an interface to a finder.  

StiTrackSeedFinder is also an abstract class but provides so data members (primarily factory pointers) 
and defines the skeleton of an algorithm that creates StiKalmanTrack objects.   

StiLocalTrackSeedFinder implements the road-finder algorithm presented in Section 3.2.3.  Its 
implementation is described in some details below. 

StiCompositeSeedFinder was implemented to allow for multiple types of seed finders to be used at 
the same time.  StiCompositeSeedFinder holds a container (std::vector<StiSeedFinder*>) of seed 
finders and loops through them in a user defined order.  Currently, only the StiLocalTrackSeedFinder 
algorithm is used and added to the composite finder, but we foresee the addition of a second pass 
algorithm to find those tracks that are missed by the road-finder.  It should be noted that 
StiCompositeSeedFinder already provides the “plug-and-play” functionality required by the ITTF 
charge. 

The algorithm used by StiLocalTrackSeedFinder can be summarized as follows: 

1. Begin at a run-time specified detector element (current version begins at padrow 45, sector 1). 

2. For every hit in that padrow (that is not already assigned to a track) extend the seed (see 
explanation below). 

3. When all hits are exhausted in that detector layer, move to the next layer in azimuth (padrow 
45, sector 2). 

4. Go to step II. 

5. When all sectors are exhausted, move in to the next layer (e.g. padrow 44, sector 1). 

6. Go to step II. 

7. Stop when a stopping point is reached (currently padrow 6). 

 

Track seeds are extended as follows:  Given a seed point, the hit that is closest in position space in the 
next layer is chosen as the other half of the two-point seed.  If that hit happens to be beyond the 
tolerances specified, the seed is aborted, and the process is begun again with the next hit in the 
padrow.  Once the two point seed is identified the seed finder uses straight line extrapolation to add 
hits in each padrow, moving in towards the origin.  A seed is allowed to skip one or more layers 
without having a hit.  When the seed reaches a pre-determined stopping point (currently 6 layers) the 
seed is fitted first in the bend plane with a fast circle fit algorithm (StFastCircleFitter from the 
StarClassLibrary) and then in the path length vs. z plane with a fast line fitter (StFastLineFitter, 
currently being added to the StarClassLibrary).  The result of the fit is then used to initialize an 
instance of StiKalmanTrack.  It is also possible to use 3 points to calculate the helix parameters, but 
initial testing showed the results to be less robust than a fit to 4-6 points.  It should be noted that the 
hit errors are not used in the fast fit.  This process is iterated for each hit in the padrow. 

 

4 . 3 .7 .2  TRACK FINDER 

The track finder is implemented following the class diagram presented in Figure 4-7.  
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Figure 4-7 Track Finder Class Diagram 
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4.3.8 Toolkit 
 

The operation of the tracker necessitates the deployment (e.g. instantiation) of a considerable number 
of entities whose type must be determined at run-time depending on the operational mode 
(production, evaluation, or event display): evaluable or drawable data and geometry entities must be 
used, rather than the basic production entities, if used in evaluation or GUI mode. A master factory, or 
toolkit, is thus used to serve the classes appropriate to the given operation conditions.  The toolkit is 
also used to guarantee classes, which have mutual dependencies, are created in proper sequence, and 
thus insure correct initialization of the code.  

The toolkit is defined as an abstract singleton class. Currently, one derived class, StiDefaultToolkit, 
exits for operation within root4star, and analysis of Star data. 

Note finally that the toolkit pattern deployed also enable flexible detector and geometry conditions: 
major components are instantiated only if and when needed. The code footprint is thereby minimized 
and the code initialization reduced optimally. 

Further information about the toolkit classes can be found online as part of the DOXYGEN auto-
generated documentation. 

 
4.3.9 Event Display 
 

Track finding is a pattern recognition problem—a problem at which the human mind excels.  Thus, 
the only way to truly test, debug, and gain confidence in a tracker is to see it work.  The ITTF 
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graphical user interface (GUI) was designed and implemented for this purpose.  After initial 
investigations, it was recognized that STAR computing environment did not provide a graphical tool 
that allowed a user to interface with c++ objects.  Several event displays did exist, but all were made 
for “picture taking” instead of interaction.  A debugging GUI should allow one to perform a function, 
look at the results, change some parameters, and repeat the exact same function, without exiting the 
program or restarting.  Thus, a GUI was built from scratch that allows one to graphically track events 
step-by-step, rewind, modify, and repeat.  The GUI has proved a powerful debugging tool, but it is not 
meant as a production version of a STAR event display.  The GUI is one part of the project that 
depends on the ROOT libraries, but it was implemented in such a way that a clear separation of the 
ITTF project from the ROOT libraries is maintained.  We use polymorphism and interfaces to ensure 
that the GUI could indeed be implemented using any number of graphical libraries (e.g., OpenGL, 
OpenInventor, QT, TCL, etc…).   The choice of ROOT for the specific implementation reflected the 
fact that ROOT was the only graphical library available in the STAR environment at the time the 
project began.   

The GUI allows one to view the detector model, hits, and tracks in various levels of complexity.  It 
provides a full 3d view of the objects used in the project.  Furthermore, it allows for interactive 
modification of the run-time parameters.  One could easily argue that, were it not for the GUI, we 
would have progressed at a far slower pace, and we would ask the STAR computing leadership to 
strongly examine the addition of a unified interactive graphical library to the STAR computing 
environment.  We spent months of valuable author time concentrating specifically on the GUI, and it 
would be a shame for another project to have to dedicate such a large fraction of resources to the same 
thing. 

The Gui is implemented exclusively in the library StiGui.  Polymorphism is the general tool.  The top 
level is class StiDisplayManager which holds a container of StiDrawable objects.  The Sti library 
depends only on StiDisplayManager.  We derive class StiRootDisplayManager from 
StiDisplayManager to control the ROOT implementation of the GUI.  The display manager operates 
on objects of type StiDrawable.  These are virtual, polymorphic objects that define the interface 
expected of an object that can be rendered to the screen: color, line type, marker type, visibility, etc.  
Next, we derive class StiRootDrawableTrack, StiRootDrawableHit, StiRootDrawableDetector, etc. 
using multiple inheritance.  For instance, StiRootDrawableDetector derives from classes StiDetector 
and StiDrawable.  Thus, by simply deriving from class StiDrawable an object magically shows up on 
screen.   

StiDisplayManager defines many methods to control the view, scale, angle, etc. of the canvas.  
StiDisplayManager is in no means a large scale solution to GUI implementation.  More complex 
graphics (composite objects, motion, etc) require much more complicated structures (ordered trees, 
etc).  However, StiDisplayManager is more than sufficient for the purposes of the ITTF project. 

 

5 Appendix 1: Kalman Filter Theory 
 

The Kalman filter is a recursive technique that enables a computationally efficient solution to the least 
square fit problem. Applied to track finding, it implies an estimate of the track parameters is 
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performed each time a new hit is added to the track. This presents the advantage of a much simpler 
matrix inversion (2 x 2 versus 2N x 2N). Additionally, one can use the estimated track parameters 
after the inclusion of a given point to predict the position of the next point.  

A basic Kalman filter deals with linear system of equations. We use the notation of Fruhwirth, and 
use the following definitions: 
 

xk the filtered state vector at point k 

xk+1
k the extrapolated state vector from point k to point k+1 

Ck+1
k the covariance matrix of xk+1

k - xk+1
t, where xk+1

t is the true value of the state vector at 
point k+1 

Ck filtered covariance matrix at point k 

Fk propagator of the state vector from point k to point k+1 

wk process noise (random disturbance) to the state vector at point k 

Qk covariance matrix of wk 

mk measurement vector at point k 

ek measurement noise at point k 

Vk covariance matrix of ek 
 
The two basic equations are: 

 
xk = Fk-1 xk-1 + wk-1 

mk = Hk xk + ek, 

where x0, is an initial estimate of the state vector, Fk  is the state propagator matrix at the kth point, Qk 
the process noise covariance matrix evaluated at the kth point, Vk, the measurement noise covariance 
matrix, and Hk a matrix which converts the state vector at point k into a measurement vector, mk. 

The initial state covariance matrix C0 can be set to the identity matrix multiplied by a large-scale 
factor. The smaller this is, the more weight is put on the initial state vector, so in general we would 
like to make C0 as large as possible. However, because of round-off errors, one needs to restrict this 
matrix to a reasonable value, which depends on the particular fit under consideration.  

The Kalman filter operation involves the following operation at each step of the track reconstruction: 

1. Ck
k-1 = Fk-1 Ck-1 Fk-1

T + Qk-1  

2. Rk
k-1 = Vk + Hk Ck

k-1 Hk
T 

3. Kk = Ck
k-1 Hk

T ( Rk
k-1 )-1  

4. rk
k-1 = mk - Hk Fk-1 xk-1 
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5. xk = Fk-1 xk-1 + Kk rk
k-1  

6. Ck = (1 - Kk Hk) Ck
k-1 

7. (χ2)k
k-1= (rk

k-1)T (Rk
k-1)-1 rk

k-1 

At the end of the iterative process, the final state vector xk represents the fit values using all data 
points. To obtain the fit values at any point k, the user can then fit backwards, starting with the last 
point. The fit value at some point k is then the average between the state vectors xk between the two 
fits. The goodness of the fit can be evaluated based on the chi-square χ2 as evaluated in step 7 above.  

6 Appendix 2:  Multiple Scattering Calculation 
We consider the case of discrete and continuous scatterers separately in sections 0and 6.2 
respectively. The treatment of energy loss is discussed in section 0. 

 

6.1 Case of a discrete scatterer 
 

With a thin scatterer, one can assume that multiple scattering affects only the track direction, i.e. that 
it has no effect on its position.  The process noise matrix can thus be written as follows 
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Equation 6-1 

where q1, q2 are uncorrelated scattering angles in two perpendicular planes crossed along the 
momentum direction. <Q1

2> and <Q2
2> are mean squared scattering angles. For small One assumes 
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Equation 6-2 

One gets after simple algebra 
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Equation 6-3 

where Xk is the kth scatterer thickness, lk = tan-1(pt/pz)  i.e.  angle between the track projection on the 
xy plane and the x-axis, and the matrix Jk is given by  

 
 

( )
( )21,

tan,,,,
θθ

λη
∂

∂
= kkkkk

k
Czy

J  

 40



Equation 6-4 

 

6.2 Case of a continuous scatterer 
 

For an infinitely thin scatterer, one can define a differential dQ as 
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Equation 6-5 

 

One can thus calculate the covariance matrix for a continuous scatterer as  
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Equation 6-6 

 

6.3 Treatment of Energy Losses 
 

The Bethe-Bloch formula expressed for pions, as shown below, enables a determination of the energy 
loss step by step. 
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Equation 6-7 

One can thus update the curvature of the track accordingly with the following expression 
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Equation 6-8 
 

7 Appendix 3: Charge of the Integrated Tracker Task Force 
 

The original charge of the Integrated Task Force is included in the inset below.  
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Monday Nov 13th, 2000 

Dear STAR Collaborators, 

In the coming year, as we all know, STAR will be upgraded with several additional subsystems to enhance, among other 
things, tracking precision and efficiency of particle identification. This new setup calls for additional tracking software. 
While the current approach of tracking in the TPC-only was found to be adequate in the recent review meeting at LBL, 
and, indeed, has proven to be tremendously successful in the processing and analysis of this year’s data, the same review 
recommended the formation of an R&D group to start work on an integrated tracking scheme to be used for the future 
detector configuration. The aim of such an approach would be to maximize the tracking efficiency and, at the same time, 
to minimize the background by ‘simultaneously ‘ using the information of all devices which can measure space-points on 
particle trajectories. This calls for the investigation into new algorithms for road-finding and track extrapolation, to name 
only the two main topics. I therefore wish to announce the formation of the Integrated-Tracking Task Force, which will be 
charged with the following task: To design, test, evaluate, implement, and document an integrated tracker for STAR that:  

1. provides highly efficient and minimum-contamination information on particles emitted into the STAR 
acceptance.  

2. incorporates all tracking detectors taking into account their detailed geometry, calibration, material location and 
thickness, as well as magnetic field effects. 

3. provide also tools which allow to extrapolate from one position on the track to any other position along the flight 
path of the particle with high accuracy (track extrapolation).  

Members of this team are chosen based upon their experience, knowledge, and overall skills in computer programming, as 
well as on their profound understanding of the physics of STAR. 

Claude Pruneau from Wayne State University is going to lead this effort. 

The group will consist of approximately 10 active members which have to be able to commit a considerable fraction of 
their time (>40%) to the project. STAR management will assist in configuring the group and in finding the necessary 
manpower to accomplish the goals. 

The following points should be kept in mind: 

 It is recommended that the group does not initially focus on one approach but investigates and evaluates 
several techniques for pattern recognition, fitting, and propagation before making a final decision.  
 Several experiments have worked on this subject in the recent past. Solutions have been developed and 
implemented by ALICE, Atlas and BaBar, to name but a few. The group should consider the re-use of such 
existing code or algorithms were applicable and justified. 

If, however, a more coherent approach requires the replacement of existing code they should feel free to do 
so.  

 The group should stay in close contact with ongoing efforts in the analysis and reconstruction of STAR data 
and address apparent issues in their algorithms. 
 The implementation of an integrated tracker requires a sufficiently detailed description of the detector to 
evaluate energy loss and multiple scattering. It is generally considered that GEANT is too complex, slow, 
and too detailed to be usable for this purpose. The development of an independent slim geometry interface 
was identified as one topic of close collaboration between the ALICE collaboration and STAR. The group 
should pursue this joint effort and take a leading role in its development.   
 The task force leader should stay in close contact to the STAR reconstruction leader. They both report to 
the STAR computing leader.  
 All code is to be written in C++, where necessary compatible with the existing STAR infrastructure. 
 The groups should meet regularly in phone meetings and at least once per month in person at BNL.  

 

 42



 43

 
 
 

8 Some Open Issues 
 

Some open issues are discussed in the section(s) below. 

 

8.1 Seed Finder 
 

The local seed finding algorithm was implemented and is currently being tested.  Unfortunately, 
quantitative comparisons to the current track finder have only recently become possible, so we are 
learning a great deal about the pattern recognition at the time of the review.  Initial results show that 
the seed finder is quite good at finding tracks that are reasonably straight (pt>600 MeV).  However, it 
appears the current efficiency is too low for tracks of large curvature.  The cause of this has not yet 
been established, but we will begin debugging immediately after the review.  Below I list a bulk 
classification of the issues to be investigated. 

� Identification of two-point seeds.  This is controlled by two parameters, deltaY and delta Z, 
which control how close in position space two points must be to be considered a two-point 
seed.  Obviously the dependence on these two parameters (and any bias they might introduce 
in, e.g., dip-angle) must be studied. 

� Extrapolation of two-point seeds.  This controlled by two parameters, as well.  Further, there is 
a known bug that has to be fixed that deals with conversion of integer numbers (e.g., pad 
number or time bucket) to floating point numbers.  This has a small but finite effect on 
efficiency for low momentum tracks. 

� Length of seeds.  The seed finder stops when a track reaches a certain number of points.  
Additionally, it allows for a finite gap in the seed.  That is, a track can miss a hit in one or 
more pad rows and continue.  These parameters must be varied and their effects studied. 

� Helix fit.  Once a seed has been found, we perform a circle fit in the bend plane and a straight 
line fit in the s-z plane.  If the fit fails the seed is aborted. 
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