ITTF on strangeness:

- Cascade reconstruction -

 What is a cascade, how we reconstruct them

In this talk:

« Efficiency » = ITTF / TPT

ITTF on the background

(even though it's somehow a bad designation)

- Charge related effects (background)
- Field related effects (background)
- ITTF on the signal : distributions
- Invariant mass peaks

ITTF on strangeness:

- Cascade reconstruction -

- What is a cascade, how we reconstruct them
- ITTF on the background
- Charge related effects (background)
- Field related effects (background)
- ITTF on the signal : distributions
- Invariant mass peaks

In this talk:

« Efficiency » = ITTF / TPT

(even though it's somehow a bad designation)

Dca = distance of closest approach

Pvx = primary vertex

Strangeness:

•
$$\Xi^- = dss$$
 $\Xi \rightarrow \Lambda + \pi^-$

$$X \otimes (p + p^{-}) + p^{-} ct * 4.92 cm$$

•
$$\Omega^- = sss$$
 $\Omega \to \Lambda + K^-$

$$W \otimes (p + p^{-}) + K^{-} ct \approx 2.46 cm$$

Detectors used: TPC alone

Data analysed : AuAu 200 GeV data

(highest Ξ statistics)

Cascade = 3 charged tracks

ITTF efficiency on tracks is cubed

for multistrange baryons!!

Therefore:

90 % efficiency on tracks Þ 73 % efficiency on cascades!

Cascade reconstruction:

Tips to read the following plots:

- Green curve = ITTF scaled to have the name number of entries as TPT
- What is an efficiency curve :
 - That's green divided by black, i.e. perfect match *in shape* is a flat line = 1

Tips to read the following plots:

- Plots of the variables :
 Black curve = TPT
 Red curve = ITTF
 - Green curve = ITTF scaled to have the name number of entries as TPT
- What is an efficiency curve :
 - That's green divided by black, i.e. perfect match *in shape* is a flat line = 1
- Plots of the efficiencies:
 Black curve = Xi + antiXi
 Cyan curve = Xi
 Magenta curve = antiXi

About the colors used...

- We don't know if TPT is right or wrong
 TPT is not The Absolute Truth
- Therefore, when we see differences between ITTF and TPT, we don't know if ITTF is to blame
- In the comparison plots I made,
 the red ellipses don't mean that ITTF is bad,
 they just mean there is a difference with TPT.

Position of the Xi vertex:

Position of the Xi vertex:

Dca's to primary vertex:

Dca's to primary vertex:

Decay lengths:

Decay lengths:

Kinematics:

Kinematics:

2D-kinematics:

Correlations:

Dca meson to Pvx vs Xi decay length

Dca meson to Pvx vs dca Lambda to Pvx

Dca baryon to Pvx vs dca Lambda to Pvx

Dca Xi daughters to Pvx:

p_^:

What changes when the field is reversed:

In Reversed Full Field (instead of Full Field):

- Dca Lambda to Pvx : see nothing
- Dca bachelor to Pvx : same deviation
- Rapidity: depends on where you're looking
- p_{\(\circ\)} : also depends on where you're looking

What changes when the field is reversed:

In Reversed Full Field (instead of Full Field):

Signal distributions:

- For geometric variables : efficiency has roughly the same shape for signal and background !
- Yet, very, very small statistics for the signal
- Impossible to see if Xi ≠ antiXi
- Impossible to see if FF ≠ RFF

(Tight cuts + dEdx)

Kinematics:

Kinematics:

Kinematics (2):

Kinematics (2):

Invariant mass peaks:

D.4 -

1.3

1.25

Invariant mass peaks: 28∑ Mase D.07099 D.07001 Overflow 1.011 **Invariant** mass drop! 102 D.04782 Second invariant mass drop! *Might* be due to less 8.0 track splitting in ITTF? SAS Mas (More statistics would be 0.07099 D.0709 needed to conclude) UNINED 1.011 0.8 0.7 20/

Invariant mass peaks:

Calculated from the invariant mass plots, after tight geometrical cuts + dEdx cuts, over 170 533 Au-Au 200 *GeV* events

ITTF finds
43 ± 3 % fewer X
than TPT

A track efficiency of 92 % would be responsible of half of this loss. A track efficiency of 83 % would be responsible of the whole loss.

Invariant mass peaks:

- We can consider that efficiency for V0's is $\approx 70 \%$ (Betty's result)
- We can consider that efficiency for Xi's is $\approx 60 \%$
- V0's are 2 tracks, Xi's are 3 tracks
- A track efficiency of 84 % explains perfectly those 2 numbers
- Track efficiency probably isn't responsible for everything, but cuts' influence is low (more stat would be needed to check that)
- <p $_{\perp}>$ of Xi daughters isn't much higher than <p $_{\perp}>$ of « non-daughters » particles, \Rightarrow drop of the track efficiency in <p $_{\perp}>$ may not explain

A track efficiency of 92 % would be responsible of half of this loss. A track efficiency of 83 % would be responsible of the whole loss.

Conclusions:

• Background:

- Dip at 0 for the X and Y position of the reconstructed Xi vertex
- Dca's have a different shape
- Drop in efficiency is higher at low p₊
- Drop in efficiency is higher at low invariant mass
- Drop in efficiency is higher at « high » rapidity
- Not the same efficiency for Xi's and anti-Xi's
- Asymetry Xi/antiXi changes / doesn't change when field sign changes

• Signal:

- Dca's have a different shape
- Drop in efficiency is higher at rapidity 0
- 43 % fewer Xi's are found

Titre: