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Measurement of CollinearDrop jet mass and its correlation with substructure

observables in pp collisions
(Dated: March 11, 2024)

Jets are collimated sprays of final-state particles produced from initial high-momentum-transfer
partonic scatterings in particle collisions. Substructure variables aim to reveal details of the par-
ton fragmentation and hadronization processes that create a jet. By removing collinear radiation
while maintaining most of the soft radiation components, one can construct CollinearDrop jet ob-
servables, which have enhanced sensitivity to the soft phase space within jets. We present the first
CollinearDrop jet measurement, corrected for detector effects with a machine learning method, Mul-
tiFold, and its correlation with SoftDrop groomed jet observables. We observe that the amount of
grooming affects the angular and momentum scales of the first hard splitting of the jet and is related
to the formation time of such splitting. These measurements indicate that the non-perturbative ef-
fects are strongly correlated with the perturbative fragmentation process.

Introduction High-energy particle collisions provide op- ss
portunities to study experimentally quarks and gluons
(partons), the fundamental degree of freedom in the
theory of Quantum Chromodynamics (QCD). In some
of these collisions, incoming quarks and gluons (par-
tons) interact with each other through the exchange of
a high-momentum virtual particle, producing outgoing e
partons with high transverse momentum (pr). Suche
outgoing partons are highly virtual and will undergo e
a series of splitting processes as they come on mass e
shell. This process is called the parton shower, and
can be described perturbatively in terms of the Dok-
shitzer—Gribov-Lipatov—-Altarelli-Parisi (DGLAP) evo- &
lution equations [IH3]. When the virtuality of the partons
is comparable to the confinement scale Aqcp, the non- es
perturbative transition to baryons and mesons (hadrons), ss
known as hadronization, begins. Experimentally, the e
spray of the final-state hadrons can be measured and es
clustered into jets. Jets reconstructed with a clustering es
algorithm [4] can serve as a proxy for the kinematics of
the outgoing partons. 7

While the interaction among partons can be well =
understood with the principles of perturbative QCD 7
(pQCD), the non-perturbative components of the parton 7
shower and hadronization remain challenging for theo- 7
retical calculations and rely mostly on phenomenological 7
models in Monte Carlo event generators. Measurements 7
of observables sensitive to such non-perturbative QCD 7s
(npQCD) effects will provide important tests for the 7
theories and constraints on the models. Together with s
studies of observables calculable from pQCD, investiga- s
tion of those sensitive to npQCD effects offers an avenue e
for a comprehensive understanding of the full parton-to- s
hadron evolution picture. 8

Beyond the jet pr, or other combinations of the jet ss
four-momentum observables, jet substructure observ- ss
ables [B] are useful tools that can provide insight into &
the parton shower and hadronization processes. To en- ss
hance perturbative contributions, SoftDrop [6] grooming se
is often used to remove wide-angle soft radiation within %
the jet. The procedure, detailed in Ref. [6], starts by re- o
clustering the jet with an angular-ordered sequential re- o
combination algorithm called Cambridge/Aachen [7, [§]. o3
Then the last step of the clustering is undone and the o

softer prong is removed based on the SoftDrop condition:

_ min(pr,1,pT,2)

Zg = > Zews (Rg/ Riet)”
g P+ Pro cut( g/ Jet) )

(1)

where z.y; is the SoftDrop momentum fraction thresh-
old, 8 is an angular exponent, Rjc is the jet resolution
parameter, pr 12 are the transverse momenta of the two
subjets, and R, is defined as:

Ry = /(1 —y2)° + (&1 — $2)%, 2)
where 11 2 and ¢; o are, respectively, the rapidities and
azimuthal angles of the two subjets. 2z, and Ry describe
the momentum imbalance and the opening angle of the
SoftDrop groomed jet, respectively.

Although the SoftDrop groomed jet substructure ob-
servables have been extensively studied both experimen-
tally [9HI4] and theoretically [15], the wide-angle and
soft radiation which are dominated by npQCD processes,
have not yet been explored in detail.

One set of observables that are sensitive to the soft
wide-angle radiation are known as CollinearDrop [16].
The general case involves the difference of two differ-
ent SoftDrop selections SD; = (zcut,1,51) and SDy =
(Zcut,2, B2) on the same jet. For nonzero values of SD;
and SDy parameters with zcut,1 < Zeut,2 and 81 > fa,
SD, aims to reduce the collinear contributions from frag-
mentation, and SD; aims to reduce the wide-angle con-
tributions from initial-state radiation (ISR), underlying
event (UE) and pileup.

As the QCD parton shower is angular ordered [I7], the
soft wide-angle radiation captured by the CollinearDrop
jet observables happens on average at an early stage of
the shower. Unlike CollinearDrop, SoftDrop then cap-
tures the late stage collinear and perturbative splittings.
Therefore, a simultaneous measurement of CollinearDrop
jet and SoftDrop jet observables can help illustrate the
hard-soft dynamics in the parton shower.

The CollinearDrop jet mass is defined in terms of the
ungroomed jet mass M and the SoftDrop groomed jet
mass Mg:



©
a

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

= /By — Bl  (3)u

150

M(g) - ‘Zie(groomed) jetpi

where p; is the four-momentum of the ith constituents
in a (groomed) jet, and E(y) and P, are the energy™
and three-momentum vector of the (groomed) jet, respec-153
tively. We denote the CollinearDrop groomed jet masss
by a: 155

156
157

M? — M?
g (4)158

a = .
p?f 159

a is calculable in Soft Collinear Effective Field Theory160
(SCET) at the parton level [16]. 1::
In this paper, we present measurements of the163
CollinearDrop groomed jet mass, to study the less—164
explored phase space of soft and wide-angle radiation; we
also measure the correlation between the CollinearDrop
groomed mass with R, and zg, in pp collisions at /s =
200 GeV at STAR. One notable feature of these measure-'
ments is that they are fully corrected for detector effects
with MultiFold, a novel machine learning method whichues
preserves the correlations in the multi-dimensional ob-1e
servable phase space on a jet-by-jet basis [I§]. We thenues
compare our fully corrected measurements with predic-ie
tions from event generators and analytical calculationsiro
done in the SCET framework. 7
Analysis details The STAR experiment [I9] recordedir
data from /s = 200 GeV pp collisions during the 2012i7
RHIC run. As energetic charged particles travel from their
interaction point to the perimeter of the Time Projectionis
Chamber (TPC), they ionize the gas atoms in the TPCue
and leave hits, from which we reconstruct tracks. Neu-iz
tral particles do not interact with the gas in the TPC andus
instead deposit their energy through the developmentir
of electromagnetic showers in Barrel Electro-Magneticiso
Calorimeter (BEMC) towers. Events are required to passis:
the jet patch trigger with a minimum transverse energyis:
E1 > 7.3 GeV be deposited in a 1 x 1 patch in 17X ¢ in theiss
BEMC. Before any run selections, 66M events pass thisis
trigger selection, corresponding to an integrated luminos-ss
ity of 23 pb~!. In addition, events are required to havesss
primary vertices within +30 cm from the center of the de-1sr
tector along the beam axis. We apply a 100% hadroniciss
correction to tower energy measurement: if a chargediso
track extrapolates to a tower, then the whole track’s pris
is removed from the tower E1. The same track and tower:o
selections are applied as in Ref. [I1] and [I4]. We recon-ie
struct jets from TPC tracks (0.2 < pr < 30 GeV/cyos
with a charged pion mass assignment) and BEMC tow-1
ers (0.2 < Er < 30 GeV, assuming massless) using theios
anti-kr sequential recombination clustering algorithm [4]1s
with a resolution parameter of R = 0.4. We apply their
selections of pr > 15 GeV/c, |n| < 0.6, transverse energyos
fraction of all neutral components < 0.9, and M > 1l
GeV/c? on reconstructed jets, consistent with the selec-ao
tions in Ref. [I4]. Similar to Ref. [II] and [14], now

background subtraction is done, because the UE contri-
bution to jets is low for STAR kinematics and unfolding
can correct for any fluctuation in it. In addition, we se-
lect jets that pass SoftDrop grooming with the standard
cuts of (zcut, 8) = (Zeut,2, B2) = (0.1,0). For this analy-
sis, the less aggressive SoftDrop grooming criteria is set
to no grooming, (zcut,1, 51) = (0,0), so the CollinearDrop
groomed observables are the difference in the ungroomed
and SoftDrop groomed observables. This simplification
can be made since the wide-angle contributions from ISR,
UE and pileup are not significant for the dataset used in
this analysis. Specifically, the contribution of UE to jet
pr for a jet with 20 < pr < 25 GeV/c is less than 1%
[20].

We measure the following jet observables: pr, z; (de-
fined in Eq. , R, (defined in Eq. , M (defined in Eq.
, M, (defined in Eq. , and jet charge Q"=2. Q"=2 is
defined as:

1 2
2 § 4 pTia
ijet 1€jet

Q=2 = 5)

where ¢; and pr, are the electric charge and pr of the ith
jet constituent, respectively.

Experimentally, jet measurements need to be corrected
for detector effects to compare with theoretical calcula-
tions and model predictions. The traditional correction
procedure uses Bayesian inference in as many as three di-
mensions and requires the observables to be binned based
on the resolution [2I]. On the other hand, MultiFold [I§]
is a machine learning technique that is able to correct
data at a higher dimensionality in an un-binned fashion.
As it preserves the correlation between the input and
corrected observables across dimensionality, MultiFold is
potentially desirable for this study.

We fully corrected six jet observables simultaneously
for detector effects using MultiFold. In addition to jets
from data, matched pairs of jets from simulations with
(detector-level) and without (particle-level) detector ef-
fects are input for MultiFold. The particle-level prior
used for unfolding is jets from events generated with
PYTHIAG [22] with the STAR tune [23]. This is a single-
parameter modification to the Perugia 2012 tune [24] to
better match STAR data. Consistent with [Dmitri’s
paper], at particle-level, hadron weak decays are not en-
abled while strong and electromagnetic decays are. The
PYTHIA events are run through GEANT3 [25] simu-
lation of the STAR detector, and embedded into data
from zero-bias events from the same run period as the
analyzed data. The detector-level jets are then recon-
structed after this embedding procedure. We geometri-
cally match a detector-level jet to a particle-level jet by
requiring AR < 0.4 between the two in the same event.

MultiFold achieves the goal of unfolding through itera-
tively reweighting the weights assigned to each jet in sim-
ulations [I8]. It is naturally unbinned since these weights
are per-jet quantities. There are two steps for each iter-
ation. In the first step, a neural network classifier is
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trained with the binary cross-entropy loss function, toso
distinguish jets from data and jets from the (reweighted),,
detector-level simulation. The input to the neural net-,,
work has as many dimensions as the number of jet ob-,,
servables of interest (in our case, 6), and the output di-,,
mension is 2, each of which represents the probabilities,
that the jet comes from data and from simulation, respec-,,
tively. It has been shown in Ref. [26] that, the output of,
such a neural network can be used to estimate a set of new,
weights to apply to the detector-level simulation (possi-,,
bly reweighted from the previous iteration). This effec-,,,
tively allows us to convert a high-dimensional reweighting,,,
problem to a classification problem. Since the detector-,,
level jets and the particle-level jets are matched, these,,
weights can be applied to the particle-level jets (possibly,,,
reweighted from the previous iteration) as well. How-,,
ever, due to the stochastic nature of detector response,,,
identical particle-level jets are likely to match to differ-,,
ent detector-level jets. A second step is then needed to,_
convert these “per-instance” [18] (where each instance is __
a detector-level and particle-level pair) weights to a func-
tion that gives a unique prescription to any particle—level281
jet. These weights obtained from the second step are then
either applied to the detector-level and particle-level jets,
in the next iteration, or quoted as the final prescription284
to obtain the unfolded jets if it is the last iteration. sos
We utilize the default settings of MultiFold as in [I§]

1286
with two dense neural networks, each with three dense,,
layers and 100 nodes per layer. We train the neural,,
networks with TensorFlow [27] and Keras [28] using the,,
Adams optimization algorithm [29]. In addition, we also,,
use the default setting for the choice of activation func-,,
tions, loss function, fraction of sample size for valida-,,
tion, and maximum number of epochs. To prevent over-,,,
training, an early stopping is implemented after 50 con-,,,
secutive epochs in which the loss value for the validation
sample has not improved.

To correct for fake jets, i.e., detector-level jets arising,y
from background, fake rates were obtained from simula-jg
tions and used as initial weights for the data as an inputae
to MultiFold. For particle-level jets that are missed at de-_
tector level due to effects such as tracking inefficiency, an_
efficiency correction was done post-unfolding in a multi-_,
dimensional fashion.

295

296

303
The correction procedure was validated using a Monte,,

Carlo closure test, which showed good performance of;y
the unfolding among all observables for jets with 20 <,
pr < 50 GeV/c. In addition, we compared the fully cor-s;,
rected jet mass distributions for three different pr bins,
using both MultiFold and RooUnfold [14]. The ratioss,
of MultiFold distributions over RooUnfold distributions,,,
are confirmed to be consistent with unity. These estab-;;,
lish further confidence in application of MultiFold to the,,,
data. 313

The statistical uncertainty is estimated with the boot-3.
strap technique [30]. In particular, 50 pseudo-datasetsss
are created and used to repeat the unfolding procedure,ss
where each jet from data has been resampled from a Pois-317

son distribution with a mean of 1.

The sources of systematic uncertainties are variations
of hadronic correction scale (from 100% to 50%), tower
energy resolution (varied by 3.8%), tracking efficiency
(varied by 4%) and unfolding procedure. The first three
sources are treated in the same way as Ref. [1I] and [14].
The dominant source for systematic uncertainty is the
variation of unfolding procedure, up to x% in the peak
region for jets in 20 < pr < 30 GeV /¢, and y% for jets in
30 < pr < 50 GeV/c. The unfolding variation includes
variation of the prior and random seed. The prior vari-
ation is accounted for through simultaneous reweighting
of all six unfolded observables as well as a, based on prior
distributions from PYTHIA [3I] and HERWIG [32]. The
variation of the random seed affects the initialization of
the weights of the neural networks, and is accounted for
with the standard error on the fully corrected result ob-
tained from 100 different initial seeds.

Different from analyses that use RooUnfold, Ref. [11]
and [I4], this analysis does not explicitly account for the
variation of the number of iterations as a separate source
of uncertainty. Going to a higher number of iterations
reduces the prior dependence bias; in fact, mathemat-
ically, the most correct number of iterations is infinity
[18]. However, the statistical limitations would introduce
unwanted fluctuations at such high number of iterations
[18]. This can manifest through a large uncertainty from
the variation of initial seeds, as well as the statistical
uncertainty obtained with the bootstrap technique. The
deviation of the result due to not able to perform an
infinite number of iterations shows up as the prior de-
pendence. Therefore, the prior variation uncertainty ef-
fectively accounts for the uncertainty due to the number
of iterations not being ideal, and the number of iterations
can be selected by considering when a) the prior depen-
dence uncertainty, b) seed uncertainty, and c¢) statistical
uncertainty are low. We select an iteration number of 15,
low enough such that the uncertainty due to seed vari-
ation and statistical uncertainty are both reasonable, at
the cost of a non-negligible prior dependence uncertainty.

Results Figure [I] shows the distribution of fully cor-
rected CollinearDrop groomed jet masses for jets with
20 < pr < 30 GeV/e and 30 < pr < 50 GeV/e.
This measurement excludes jets with M = M, (?% of
jets in this 20 < pr < 30 GeV/c and ?% of jets in
30 < pr < 50 GeV/c) so that the peak in the small
but nonzero a region is visible. The M = M, case cor-
responds to the jets whose first splittings pass the cri-
terion of (zeut, ) = (0.1,0) without the need of Soft-
Drop grooming, because the lower-pr prong of the split-
ting carries at least 10% of the total jet pr. We observe
that the data do not show a pt dependence of a. Com-
parisons with event generator descriptions are shown in
dashed lines, with vertical error bars indicating statisti-
cal uncertainties. Both PYTHIA6 STAR tune [23] and
HERWIG 7.2.2 [32] capture the qualitative trend of data,
although there is some tension with PYTHIA 8.303 with
Detroit tune [3T] (finalize after systematics are done).
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FIG. 1. CollinearDrop jet mass distributions.

Analytic calculation with NLL SCET performed at the
parton level shows deviation from both event generator
predictions and data, indicating that the CollinearDrop
groomed mass is sensitive to hadronization effects. The
error band indicates typical scale variations in theoretical
calculation.

Figure [2|shows the correlation between a and the Soft-se:
Drop groomed shared momentum fraction z, and thes
SoftDrop groomed jet radius Ry in 20 < pr < 30 GeV /¢,
where the average value of the CollinearDrop groomed jetses
mass is indicated by the color of each bin in the zz — Rg36s
plane. The M = M, jets are included in this plot. Thisss
plane captures the Lund Plane of the first groomed split-ze7
ting. We see that a is strongly correlated with Ry whilesss
weakly correlated with z. 369

Also shown in Fig. [2]is curves of constant formationsmo
time ¢, which approximates the time it takes for a partonsn
to radiate a gluon. This can be estimated as the life-times
of the parton using the Heisenberg uncertainty principles
[17]. It is related to other parton kinematic variables by:s

375

= : , (©)"

2Ez(1 — 2)(1 — cos(#)) a7

378

where F is the energy of the parent parton, z is the mo-sr
mentum fraction carried by the lower-pt daughter par-ss
ton, and 6 is the opening angle between the two daughter.ss

E can be approximated by the jet pr; for a perturba-
tive hard splitting, z and € can be approximated by the
SoftDrop z; and R, respectively [II]. We obtain the
curves shown by replacing the parton variables in Eq. [f]
with their (SoftDrop) jet counterparts, so ¢ can be inter-
preted as the time that the first hard splitting to pass the
SoftDrop criterion takes to develop. The strong correla-
tion between a and R, can therefore be understood as
how the amount of early-stage radiation affects when the
hard splitting happens. Specifically, to shed a significant
amount of mass at the early stage of the parton shower,
which is predominantly done via soft gluon radiation, the
hard splitting needs to happen relatively late on average.

It is worth emphasizing that the measurement shown
Fig. [2| showcases the power of MultiFold, which enabled
us to make selections in three variables, pr, z; and Ry,
and study a fourth one a which itself is composite of
a few variables; all of these observables have been fully

corrected for detector effects.
0.0200
0.0175
0.0150
N~
0.0125 %
N
0.0100 El
0.0075
=
0.0050
0.0025
4 -0.0000

FIG. 2. CollinearDrop groomed mass as a function of zg — Ry

Fully corrected

0.50
045

0.40

0130

Ry

Figure [3| shows the log(a) distributions for specific re-
gions of the z; — Ry plane. The leftmost bin includes
the a = 0 jets, which do not have anything removed
by SoftDrop and are therefore possibly dominated by
jets whose first splittings in the parton shower are al-
ready perturbative. Region 3 (0.15 < R, < 0.25 and
0.1 < zg < 0.2) includes asymmetric and intermediate-
angle splittings while Region 2 (0.15 < Ry < 0.25 and
0.4 < zz; < 0.5) includes symmetric and intermediate-
angle splittings. Despite the different z, selections, the
fraction of a = 0 jets and the distributions in a > 0 are
similar. The weak dependence of a on 2 is consistent
with our observation made for Fig. [2|

However, as we continue to scan across the plane, we
notice drastic changes in the fraction of jets with a = 0 as
well as differences in shape in the a > 0 region. We first
move onto Region 1 (0 < Ry < 0.1 and 0.4 < 2z, < 0.5),
which includes symmetric and collinear radiation. Fig.
[3] also shows that, compared to Regions 2 and 3, Region
1 is more likely to have soft radiation groomed away by
SoftDrop as indicated by the decreased count for a = 0,
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and has a broader tail for the small but nonzero a region.ss
On the other hand, we observe from Fig. [2| that we haveasp
on average higher values of a in this region, which cansu
be understood as mostly affected by the slightly higherao
values in log(a) > —1.5. The distribution of log(a) isws
wider in both directions arises from that a selection ofa
narrow hard splitting opens up a large phase space foraos
the amount of radiation preceding the splitting. 406
Region 4 (0.3 < R, < 0.4 and 0.1 < 2z < 0.2) in-sor
cludes asymmetric and wide-angle splittings, character-sos
istic of perturbative early emissions. Again compared toao
Regions 2 and 3, in Region 4, the significant fraction ofao
a = 0 jets indicates that it is highly probable that noau
non-perturbative early emission has happened before the
perturbative emission. This is likely the explanation for
why the z-axis values are also close to 0 in this region in

Fig.
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* * 421
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424
425
FIG. 3. Distribution of log(a) with various selections of Ry,
and zg.

427

Conclusions In this Letter, we have presented the
first CollinearDrop groomed observable measurement,
the CollinearDrop groomed mass, and its correlations
with groomed jet substructure observables, in pp colli-
sions at /s = 200 GeV with the STAR experiment. A
machine learning driven method to correct for detector
effects, MultiFold, has been applied for the first time to
hadronic collision data, which allows for access of multi-
dimensional correlations on a jet-by-jet basis. We demon-
strate how MultiFold allows us to present measurements
in 4 dimensions and shows promising potential for future
multi-differential measurements as the community enters
high-statistics, precision QCD era.

Event generator predictions and theoretical calcula-
tion were shown to qualitatively describe the data for
the CollinearDrop groomed mass, which probes the soft
radiation within jets. From the investigation of the cor-
relation between the CollinearDrop groomed mass a and
the SoftDrop groomed observables z, and R, we observe
that on average, a large nonperturbative radiation biases
the perturbative splitting to happen late. We also ob-
served a strong correlation between the CollinearDrop
groomed mass and Rg. In particular, a large R, biases
toward a higher probability that the jet has no radiation
prior to the perturbative splitting, and a small R, bi-
ases towards a higher probability that the jet has some
radiation prior to the splitting. These measurements
demonstrate the interplay between the nonperturbative
processes and the perturbative jet fragmentation.
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