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Jets are collimated sprays of final-state particles produced from initial high-momentum-transfer4

partonic scatterings in particle collisions. Substructure variables aim to reveal details of the par-5

ton fragmentation and hadronization processes that create a jet. By removing collinear radiation6

while maintaining most of the soft radiation components, one can construct CollinearDrop jet ob-7

servables, which have enhanced sensitivity to the soft phase space within jets. We present the first8

CollinearDrop jet measurement, corrected for detector effects with a machine learning method, Mul-9

tiFold, and its correlation with SoftDrop groomed jet observables. We observe that the amount of10

grooming affects the angular and momentum scales of the first hard splitting of the jet and is related11

to the formation time of such splitting. These measurements indicate that the non-perturbative ef-12

fects are strongly correlated with the perturbative fragmentation process.13

Introduction High-energy particle collisions provide op-14

portunities to study experimentally quarks and gluons15

(partons), the fundamental degree of freedom in the16

theory of Quantum Chromodynamics (QCD). In some17

of these collisions, incoming quarks and gluons (par-18

tons) interact with each other through the exchange of19

a high-momentum virtual particle, producing outgoing20

partons with high transverse momentum (pT). Such21

outgoing partons are highly virtual and will undergo22

a series of splitting processes as they come on mass23

shell. This process is called the parton shower, and24

can be described perturbatively in terms of the Dok-25

shitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evo-26

lution equations [1–3]. When the virtuality of the partons27

is comparable to the confinement scale ΛQCD, the non-28

perturbative transition to baryons and mesons (hadrons),29

known as hadronization, begins. Experimentally, the30

spray of the final-state hadrons can be measured and31

clustered into jets. Jets reconstructed with a clustering32

algorithm [4] can serve as a proxy for the kinematics of33

the outgoing partons.34

While the interaction among partons can be well35

understood with the principles of perturbative QCD36

(pQCD), the non-perturbative components of the parton37

shower and hadronization remain challenging for theo-38

retical calculations and rely mostly on phenomenological39

models in Monte Carlo event generators. Measurements40

of observables sensitive to such non-perturbative QCD41

(npQCD) effects will provide important tests for the42

theories and constraints on the models. Together with43

studies of observables calculable from pQCD, investiga-44

tion of those sensitive to npQCD effects offers an avenue45

for a comprehensive understanding of the full parton-to-46

hadron evolution picture.47

Beyond the jet pT, or other combinations of the jet48

four-momentum observables, jet substructure observ-49

ables [5] are useful tools that can provide insight into50

the parton shower and hadronization processes. To en-51

hance perturbative contributions, SoftDrop [6] grooming52

is often used to remove wide-angle soft radiation within53

the jet. The procedure, detailed in Ref. [6], starts by re-54

clustering the jet with an angular-ordered sequential re-55

combination algorithm called Cambridge/Aachen [7, 8].56

Then the last step of the clustering is undone and the57

softer prong is removed based on the SoftDrop condition:58

zg =
min(pT,1, pT,2)

pT,1 + pT,2
> zcut(Rg/Rjet)

β , (1)59

where zcut is the SoftDrop momentum fraction thresh-60

old, β is an angular exponent, Rjet is the jet resolution61

parameter, pT,1,2 are the transverse momenta of the two62

subjets, and Rg is defined as:63

Rg =
√

(y1 − y2)2 + (ϕ1 − ϕ2)2, (2)64

where y1,2 and ϕ1,2 are, respectively, the rapidities and65

azimuthal angles of the two subjets. zg and Rg describe66

the momentum imbalance and the opening angle of the67

SoftDrop groomed jet, respectively.68

Although the SoftDrop groomed jet substructure ob-69

servables have been extensively studied both experimen-70

tally [9–14] and theoretically [15], the wide-angle and71

soft radiation which are dominated by npQCD processes,72

have not yet been explored in detail.73

One set of observables that are sensitive to the soft74

wide-angle radiation are known as CollinearDrop [16].75

The general case involves the difference of two differ-76

ent SoftDrop selections SD1 = (zcut,1, β1) and SD2 =77

(zcut,2, β2) on the same jet. For nonzero values of SD178

and SD2 parameters with zcut,1 ≤ zcut,2 and β1 ≥ β2,79

SD2 aims to reduce the collinear contributions from frag-80

mentation, and SD1 aims to reduce the wide-angle con-81

tributions from initial-state radiation (ISR), underlying82

event (UE) and pileup.83

As the QCD parton shower is angular ordered [17], the84

soft wide-angle radiation captured by the CollinearDrop85

jet observables happens on average at an early stage of86

the shower. Unlike CollinearDrop, SoftDrop then cap-87

tures the late stage collinear and perturbative splittings.88

Therefore, a simultaneous measurement of CollinearDrop89

jet and SoftDrop jet observables can help illustrate the90

hard-soft dynamics in the parton shower.91

The CollinearDrop jet mass is defined in terms of the92

ungroomed jet mass M and the SoftDrop groomed jet93

mass Mg:94
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M(g) =

∣∣∣∣∑i∈(groomed) jet
pi

∣∣∣∣ = √
E2

(g) − |p⃗(g)|2, (3)95

where pi is the four-momentum of the ith constituent96

in a (groomed) jet, and E(g) and p⃗(g) are the energy97

and three-momentum vector of the (groomed) jet, respec-98

tively. We denote the CollinearDrop groomed jet mass99

by a:100

a =
M2 −M2

g

p2T
. (4)101

a is calculable in Soft Collinear Effective Field Theory102

(SCET) at the parton level [16].103

In this paper, we present measurements of the104

CollinearDrop groomed jet mass, to study the less-105

explored phase space of soft and wide-angle radiation; we106

also measure the correlation between the CollinearDrop107

groomed mass with Rg and zg, in pp collisions at
√
s =108

200 GeV at STAR. One notable feature of these measure-109

ments is that they are fully corrected for detector effects110

with MultiFold, a novel machine learning method which111

preserves the correlations in the multi-dimensional ob-112

servable phase space on a jet-by-jet basis [18]. We then113

compare our fully corrected measurements with predic-114

tions from event generators and analytical calculations115

done in the SCET framework.116

Analysis details The STAR experiment [19] recorded117

data from
√
s = 200 GeV pp collisions during the 2012118

RHIC run. As energetic charged particles travel from the119

interaction point to the perimeter of the Time Projection120

Chamber (TPC), they ionize the gas atoms in the TPC121

and leave hits, from which we reconstruct tracks. Neu-122

tral particles do not interact with the gas in the TPC and123

instead deposit their energy through the development124

of electromagnetic showers in Barrel Electro-Magnetic125

Calorimeter (BEMC) towers. Events are required to pass126

the jet patch trigger with a minimum transverse energy127

ET > 7.3 GeV be deposited in a 1×1 patch in η×ϕ in the128

BEMC. Before any run selections, 65M events pass this129

trigger selection, corresponding to an integrated luminos-130

ity of 23 pb−1. In addition, events are required to have131

primary vertices within ±30 cm from the center of the de-132

tector along the beam axis. We apply a 100% hadronic133

correction to tower energy measurement: if a charged134

track extrapolates to a tower, then the whole track’s pT135

is removed from the tower ET. The same track and tower136

selections are applied as in Ref. [11] and [14]. We recon-137

struct jets from TPC tracks (0.2 < pT < 30 GeV/c,138

with a charged pion mass assignment) and BEMC tow-139

ers (0.2 < ET < 30 GeV, assuming massless) using the140

anti-kT sequential recombination clustering algorithm [4]141

with a resolution parameter of R = 0.4. We apply the142

selections of pT > 15 GeV/c, |η| < 0.6, transverse energy143

fraction of all neutral components < 0.9, and M > 1144

GeV/c2 on reconstructed jets, consistent with the selec-145

tions in Ref. [14]. Similar to Ref. [11] and [14], no146

background subtraction is done, because the UE contri-147

bution to jets is low for STAR kinematics and unfolding148

can correct for any fluctuation in it. In addition, we se-149

lect jets that pass SoftDrop grooming with the standard150

cuts of (zcut, β) = (zcut,2, β2) = (0.1, 0). For this analy-151

sis, the less aggressive SoftDrop grooming criteria is set152

to no grooming, (zcut,1, β1) = (0, 0), so the CollinearDrop153

groomed observables are the difference in the ungroomed154

and SoftDrop groomed observables. This simplification155

can be made since the wide-angle contributions from ISR,156

UE and pileup are not significant for the dataset used in157

this analysis. Specifically, the contribution of UE to jet158

pT for a jet with 20 < pT < 25 GeV/c is less than 1%159

[20].160

We measure the following jet observables: pT, zg (de-161

fined in Eq. 1), Rg (defined in Eq. 2), M (defined in Eq.162

3), Mg (defined in Eq. 3), and jet charge Qκ=2. Qκ=2 is163

defined as:164

Qκ=2 =
1

p2Tjet

∑
i∈jet

qi · p2Ti
, (5)165

where qi and pTi
are the electric charge and pT of the ith166

jet constituent, respectively.167

Experimentally, jet measurements need to be corrected168

for detector effects to compare with theoretical calcula-169

tions and model predictions. The traditional correction170

procedure uses Bayesian inference in as many as three di-171

mensions and requires the observables to be binned based172

on the resolution [21]. On the other hand, MultiFold [18]173

is a machine learning technique that is able to correct174

data at a higher dimensionality in an un-binned fashion.175

As it preserves the correlation between the input and176

corrected observables across dimensionality, MultiFold is177

potentially desirable for this study.178

We fully corrected six jet observables simultaneously179

for detector effects using MultiFold. In addition to jets180

from data, matched pairs of jets from simulations with181

(detector-level) and without (particle-level) detector ef-182

fects are input for MultiFold. The particle-level prior183

used for unfolding is jets from events generated with184

PYTHIA6 [22] with the STAR tune [23]. This is a single-185

parameter modification to the Perugia 2012 tune [24] to186

better match STAR data. Consistent with [Dmitri’s187

paper], at particle-level, hadron weak decays are not en-188

abled while strong and electromagnetic decays are. The189

PYTHIA events are run through GEANT3 [25] simu-190

lation of the STAR detector, and embedded into data191

from zero-bias events from the same run period as the192

analyzed data. The detector-level jets are then recon-193

structed after this embedding procedure. We geometri-194

cally match a detector-level jet to a particle-level jet by195

requiring ∆R < 0.4 between the two in the same event.196

MultiFold achieves the goal of unfolding through itera-197

tively reweighting the weights assigned to each jet in sim-198

ulations [18]. It is naturally unbinned since these weights199

are per-jet quantities. There are two steps for each iter-200

ation. In the first step, a neural network classifier is201
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trained with the binary cross-entropy loss function, to202

distinguish jets from data and jets from the (reweighted)203

detector-level simulation. The input to the neural net-204

work has as many dimensions as the number of jet ob-205

servables of interest (in our case, 6), and the output di-206

mension is 2, each of which represents the probabilities207

that the jet comes from data and from simulation, respec-208

tively. It has been shown in Ref. [26] that, the output of209

such a neural network can be used to estimate a set of new210

weights to apply to the detector-level simulation (possi-211

bly reweighted from the previous iteration). This effec-212

tively allows us to convert a high-dimensional reweighting213

problem to a classification problem. Since the detector-214

level jets and the particle-level jets are matched, these215

weights can be applied to the particle-level jets (possibly216

reweighted from the previous iteration) as well. How-217

ever, due to the stochastic nature of detector response,218

identical particle-level jets are likely to match to differ-219

ent detector-level jets. A second step is then needed to220

convert these “per-instance” [18] (where each instance is221

a detector-level and particle-level pair) weights to a func-222

tion that gives a unique prescription to any particle-level223

jet. These weights obtained from the second step are then224

either applied to the detector-level and particle-level jets225

in the next iteration, or quoted as the final prescription226

to obtain the unfolded jets if it is the last iteration.227

We utilize the default settings of MultiFold as in [18],228

with two dense neural networks, each with three dense229

layers and 100 nodes per layer. We train the neural230

networks with TensorFlow [27] and Keras [28] using the231

Adams optimization algorithm [29]. In addition, we also232

use the default setting for the choice of activation func-233

tions, loss function, fraction of sample size for valida-234

tion, and maximum number of epochs. To prevent over-235

training, an early stopping is implemented after 50 con-236

secutive epochs in which the loss value for the validation237

sample has not improved.238

To correct for fake jets, i.e., detector-level jets arising239

from background, fake rates were obtained from simula-240

tions and used as initial weights for the data as an input241

to MultiFold. For particle-level jets that are missed at de-242

tector level due to effects such as tracking inefficiency, an243

efficiency correction was done post-unfolding in a multi-244

dimensional fashion.245

The correction procedure was validated using a Monte246

Carlo closure test, which showed good performance of247

the unfolding among all observables for jets with 20 <248

pT < 50 GeV/c. In addition, we compared the fully cor-249

rected jet mass distributions for three different pT bins,250

using both MultiFold and RooUnfold [14]. The ratios251

of MultiFold distributions over RooUnfold distributions252

are confirmed to be consistent with unity. These estab-253

lish further confidence in application of MultiFold to the254

data.255

The statistical uncertainty is estimated with the boot-256

strap technique [30]. In particular, 50 pseudo-datasets257

are created and used to repeat the unfolding procedure,258

where each jet from data has been resampled from a Pois-259

son distribution with a mean of 1.260

The sources of systematic uncertainties are variations261

of hadronic correction scale (from 100% to 50%), tower262

energy resolution (varied by 3.8%), tracking efficiency263

(varied by 4%) and unfolding procedure. The first three264

sources are treated in the same way as Ref. [11] and [14].265

The dominant source for systematic uncertainty is the266

variation of unfolding procedure, up to x% in the peak267

region for jets in 20 < pT < 30 GeV/c, and y% for jets in268

30 < pT < 50 GeV/c. The unfolding variation includes269

variation of the prior and random seed. The prior vari-270

ation is accounted for through simultaneous reweighting271

of all six unfolded observables as well as a, based on prior272

distributions from PYTHIA [31] and HERWIG [32]. The273

variation of the random seed affects the initialization of274

the weights of the neural networks, and is accounted for275

with the standard error on the fully corrected result ob-276

tained from 100 different initial seeds.277

Different from analyses that use RooUnfold, Ref. [11]278

and [14], this analysis does not explicitly account for the279

variation of the number of iterations as a separate source280

of uncertainty. Going to a higher number of iterations281

reduces the prior dependence bias; in fact, mathemat-282

ically, the most correct number of iterations is infinity283

[18]. However, the statistical limitations would introduce284

unwanted fluctuations at such high number of iterations285

[18]. This can manifest through a large uncertainty from286

the variation of initial seeds, as well as the statistical287

uncertainty obtained with the bootstrap technique. The288

deviation of the result due to not able to perform an289

infinite number of iterations shows up as the prior de-290

pendence. Therefore, the prior variation uncertainty ef-291

fectively accounts for the uncertainty due to the number292

of iterations not being ideal, and the number of iterations293

can be selected by considering when a) the prior depen-294

dence uncertainty, b) seed uncertainty, and c) statistical295

uncertainty are low. We select an iteration number of 15,296

low enough such that the uncertainty due to seed vari-297

ation and statistical uncertainty are both reasonable, at298

the cost of a non-negligible prior dependence uncertainty.299

Results Figure 1 shows the distribution of fully cor-300

rected CollinearDrop groomed jet masses for jets with301

20 < pT < 30 GeV/c and 30 < pT < 50 GeV/c.302

This measurement excludes jets with M = Mg (?% of303

jets in this 20 < pT < 30 GeV/c and ?% of jets in304

30 < pT < 50 GeV/c) so that the peak in the small305

but nonzero a region is visible. The M = Mg case cor-306

responds to the jets whose first splittings pass the cri-307

terion of (zcut, β) = (0.1, 0) without the need of Soft-308

Drop grooming, because the lower-pT prong of the split-309

ting carries at least 10% of the total jet pT. We observe310

that the data do not show a pT dependence of a. Com-311

parisons with event generator descriptions are shown in312

dashed lines, with vertical error bars indicating statisti-313

cal uncertainties. Both PYTHIA6 STAR tune [23] and314

HERWIG 7.2.2 [32] capture the qualitative trend of data,315

although there is some tension with PYTHIA 8.303 with316

Detroit tune [31] (finalize after systematics are done).317
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FIG. 1. CollinearDrop jet mass distributions.

Analytic calculation with NLL SCET performed at the318

parton level shows deviation from both event generator319

predictions and data, indicating that the CollinearDrop320

groomed mass is sensitive to hadronization effects. The321

error band indicates typical scale variations in theoretical322

calculation.323

Figure 2 shows the correlation between a and the Soft-324

Drop groomed shared momentum fraction zg and the325

SoftDrop groomed jet radius Rg in 20 < pT < 30 GeV/c,326

where the average value of the CollinearDrop groomed jet327

mass is indicated by the color of each bin in the zg −Rg328

plane. The M = Mg jets are included in this plot. This329

plane captures the Lund Plane of the first groomed split-330

ting. We see that a is strongly correlated with Rg while331

weakly correlated with zg.332

Also shown in Fig. 2 is curves of constant formation333

time t, which approximates the time it takes for a parton334

to radiate a gluon. This can be estimated as the life-time335

of the parton using the Heisenberg uncertainty principle336

[17]. It is related to other parton kinematic variables by:337

t =
1

2Ez(1− z)(1− cos(θ))
, (6)338

where E is the energy of the parent parton, z is the mo-339

mentum fraction carried by the lower-pT daughter par-340

ton, and θ is the opening angle between the two daughter.341

E can be approximated by the jet pT; for a perturba-342

tive hard splitting, z and θ can be approximated by the343

SoftDrop zg and Rg, respectively [11]. We obtain the344

curves shown by replacing the parton variables in Eq. 6345

with their (SoftDrop) jet counterparts, so t can be inter-346

preted as the time that the first hard splitting to pass the347

SoftDrop criterion takes to develop. The strong correla-348

tion between a and Rg can therefore be understood as349

how the amount of early-stage radiation affects when the350

hard splitting happens. Specifically, to shed a significant351

amount of mass at the early stage of the parton shower,352

which is predominantly done via soft gluon radiation, the353

hard splitting needs to happen relatively late on average.354

It is worth emphasizing that the measurement shown355

Fig. 2 showcases the power of MultiFold, which enabled356

us to make selections in three variables, pT, zg and Rg,357

and study a fourth one a which itself is composite of358

a few variables; all of these observables have been fully359

corrected for detector effects.360

FIG. 2. CollinearDrop groomed mass as a function of zg −Rg

Figure 3 shows the log(a) distributions for specific re-361

gions of the zg − Rg plane. The leftmost bin includes362

the a = 0 jets, which do not have anything removed363

by SoftDrop and are therefore possibly dominated by364

jets whose first splittings in the parton shower are al-365

ready perturbative. Region 3 (0.15 < Rg < 0.25 and366

0.1 < zg < 0.2) includes asymmetric and intermediate-367

angle splittings while Region 2 (0.15 < Rg < 0.25 and368

0.4 < zg < 0.5) includes symmetric and intermediate-369

angle splittings. Despite the different zg selections, the370

fraction of a = 0 jets and the distributions in a > 0 are371

similar. The weak dependence of a on zg is consistent372

with our observation made for Fig. 2.373

However, as we continue to scan across the plane, we374

notice drastic changes in the fraction of jets with a = 0 as375

well as differences in shape in the a > 0 region. We first376

move onto Region 1 (0 < Rg < 0.1 and 0.4 < zg < 0.5),377

which includes symmetric and collinear radiation. Fig.378

3 also shows that, compared to Regions 2 and 3, Region379

1 is more likely to have soft radiation groomed away by380

SoftDrop as indicated by the decreased count for a = 0,381
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and has a broader tail for the small but nonzero a region.382

On the other hand, we observe from Fig. 2 that we have383

on average higher values of a in this region, which can384

be understood as mostly affected by the slightly higher385

values in log(a) > −1.5. The distribution of log(a) is386

wider in both directions arises from that a selection of387

narrow hard splitting opens up a large phase space for388

the amount of radiation preceding the splitting.389

Region 4 (0.3 < Rg < 0.4 and 0.1 < zg < 0.2) in-390

cludes asymmetric and wide-angle splittings, character-391

istic of perturbative early emissions. Again compared to392

Regions 2 and 3, in Region 4, the significant fraction of393

a = 0 jets indicates that it is highly probable that no394

non-perturbative early emission has happened before the395

perturbative emission. This is likely the explanation for396

why the z-axis values are also close to 0 in this region in397

Fig. 2.398

FIG. 3. Distribution of log(a) with various selections of Rg

and zg.

Conclusions In this Letter, we have presented the399

first CollinearDrop groomed observable measurement,400

the CollinearDrop groomed mass, and its correlations401

with groomed jet substructure observables, in pp colli-402

sions at
√
s = 200 GeV with the STAR experiment. A403

machine learning driven method to correct for detector404

effects, MultiFold, has been applied for the first time to405

hadronic collision data, which allows for access of multi-406

dimensional correlations on a jet-by-jet basis. We demon-407

strate how MultiFold allows us to present measurements408

in 4 dimensions and shows promising potential for future409

multi-differential measurements as the community enters410

high-statistics, precision QCD era.411

Event generator predictions and theoretical calcula-412

tion were shown to qualitatively describe the data for413

the CollinearDrop groomed mass, which probes the soft414

radiation within jets. From the investigation of the cor-415

relation between the CollinearDrop groomed mass a and416

the SoftDrop groomed observables zg and Rg, we observe417

that on average, a large nonperturbative radiation biases418

the perturbative splitting to happen late. We also ob-419

served a strong correlation between the CollinearDrop420

groomed mass and Rg. In particular, a large Rg biases421

toward a higher probability that the jet has no radiation422

prior to the perturbative splitting, and a small Rg bi-423

ases towards a higher probability that the jet has some424

radiation prior to the splitting. These measurements425

demonstrate the interplay between the nonperturbative426

processes and the perturbative jet fragmentation.427
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