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Abstract

This note outlines the summary of procedure used to carry out the calibration
of the Barrel Electromagnetic Calorimeter (BEMC) in the STAR Experiment at
RHIC for the STAR run 2013 data set. Minimum Ionizing Particles (MIPs) pro-
vided the relative calibration for each of the 4800 BEMC towers, while electrons
were used to find the absolute calibration separately for each of the 40 7-rings,
which consist of 120 towers at each distinct 7 in the detector. Preliminary cali-
brations constant were obtained, along with systematic uncertainties calculated
to be on the order of 3% for run 13 period 1 and 2% for run 13 period 2.
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1 Introduction

The BEMC is a Pb-Scintillator sampling calorimeter that covers 27 in azimuth and
from -1 to 1 in pseudo-rapidity, which is divided into 120 modules. Each module
consists of 21 mega-tiles of scintillator and 20 layers of Pb. The mega-tiles are divided
into 40 optically isolated sections covering approximately 0.05 x 0.05 in n X ¢ space.
The total depth is approximately 20X, at =0, which corresponds to the containment
of electromagnetic showers up to 60GeV. The tower high voltages were set so that
a 60 GeV shower would be near the maximum of the 12 bit ADC readout. In 2013
RHIC ran in the proton-proton mode at /s = 510GeV. During the Run 13 data
collection a new detector, the Heavy Flavor Tracker (HFT), was installed at STAR
during day 126 to day 129 of the running period, which caused for a change in the
geometrical properties of the detector. Therefore two sets of calibration gain constants
were obtained by separately analyzing the data before (period 1, day 76 to day 126)
and after (period 2, day 129 to day 161) the HFT insertion. The runs used for the
calibration are the same as those used for the STAR 2013 W A, analysis [1].

2 Relative gain calibration using MIPs

The method used in this calibration is the same as the one used in the STAR 2009
BEMC calibration [2] and STAR 2012 pp200 GeV BEMC calibration. First a relative
tower by tower calibration is done using minimum ionizing particles (MIPs). This
is done by identifying the characteristic ADC value in the MIP spectrum. The MIP
energy deposition has a functional form as shown in Equation [I} which was determined
via test beam data and simulation fits to spectra [2].

1+ 0.0567> 1
sin(6) (1)
where 7 is the pseudo-rapidity of the tower and 6 is the scattering angle. From

this relation one expects to see a peak approximately at 20 ADCs above pedestal, as

shown in Figure

To find the MIP peak, tracks with momentum, p > 1 GeV, which entered and
exited the same tower were used. A single track per tower was considered in order
to reduce the background energy deposition. A MIP ADC distribution was obtained
per tower and it was fitted with a gaussianxlandau function which best described the
signal and the background regions of the spectrum. The fitted mean vale was taken
as the mean MIP ADC value for the given tower. For some towers a fit to the MIP
distribution was not possible due to various reasons such as dead PMTs, hot towers,
or other hardware failures. A quality analysis (QA) was done for every single tower to
ensure the quality of the MIP peak extraction. Based on the results of the QA, towers
with unacceptable MIP peak means, such as double peaks, significantly larger than

expected MIP peaks, and towers with no MIP peaks were marked as towers having a

“bad” status in the data base. The MIP means of remaining towers were marked with

a “good” status and were then used to find the relative gain constants for each tower

according to the formula in Equation [2|

MIP = (264 4+ 444 + 13,y MeV) -

o 0.264(1+0.056 - 7’) (2)
relative — ADCmip . 5111(9)
6
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Figure 1: A typical MIP ADC distribution (black points) and gaussianxlandau fit (in
blue) for a single tower.

2.1 Time dependance of the MIP peak

The time dependance of the MIP peak was examined during the relative gain calibra-
tion. In order to do the evaluation, entire run 13 data set was divided in to 15 time
periods, with each period containing approximately 6 days worth of consecutive runs.
The average MIP peak value of each time period was then compared to the average
MIP peak value of the subsequent time period. Figure [2|shows the difference between
the average MIP peak value of each time period to the subsequent time period. Over
the span of the Run 13 period 1 running, a change of approximately 2% in the MIP
peak was observed. However during the Runl3 period 2 running, the MIP peak was
found to be fairly stable. Moreover, the mean MIP ADC values of the Run 13 p-p
510 GeV were compared to the corresponding Run 12 p-p 200 GeV and p-p 510 GeV
calibrations. Changes to the MIP peak values during these running periods can be
seen in Figure[3] As one would expect, the mean MIP peak value decreases from Run
12 to Run 13. According to the distributions, there is about a 3% difference found
between the average MIP peak values of Run 12 p-p 200 and 510 GeV running, while
only about a 1% difference is seen between the Run 12 and Run 13 p-p 510 GeV
runnings.
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Figure 3: Distributions of the MIP peak values from STAR Run 12 p-p 200 GeV
(upper left panel), Run 12 p-p 510 GeV (upper right panel), Run 13 510 GeV period
1 (bottom left), and Run 13 p-p 510 GeV period 2 (bottom right) running periods.

55 2.2 Summary

s The relative gain constants of the calorimeter towers were obtained using MIPs. Dur-
137 ing the process 4.7% of the 4800 towers were identified as “bad” towers during Run
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13 period 1 running, while 6.1% of towers were identified as “bad” in Run 13 period
2 running. The increase in “bad” towers for period 2 was found to be caused by a
missing modulo in the calorimeter. Figure 4| shows n — ¢ distributions of relative gain
constants of all the barrel towers from the Run 13 period 1 and 2 calibrations. The
towers which were identified as being “good” towers were used to obtain an absolute
gain constants by calibrating the electron’s energy to the tracking momentum through
the energy over momentum ratio (E/p). Time dependance of the MIP peak values
were also studied and found to vary by approximately 2% during the Run 13 period 1
running, and were fairly stable during the Run 13 period 2 running.
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Figure 4: Relative gain constants of the calorimeter towers of Run 13 periods 1(left
panel) and 2(right panel).

3 Absolute gain calibrations using Electrons

Absolute gain calibration constants were obtained by adjusting the relative gain con-
stants using the electron shower energy spectra. Since electrons deposit all of their
energy in the calorimeter towers, the strategy was to compare the deposited electron
energy to the momentum of the electron track calculated from the TPC. For an ideal
situation, assuming the electrons to be massless (a reasonable assumption for electron
tracks with momentum on the order of GeV/c), the energy deposited in the calorimeter
tower would be equal to the electron’s momentum, and thus £/p = 1. Unlike MIPs,
abundant electrons are hard to find tower by tower. Therefore electrons that strike
towers at a given pseudo-rapidity are added together (120 towers in each of 40 rings).
Then the distribution of the electron’s E/p for a given ring was obtained considering
all of the towers [120 towers] with in a ring. Conventionally, E is the energy deposition
with in a single tower of the calorimeter where a electron track is matched from the
TPC while p is the momentum of the track. The measured electron energy E from the
calorimeter tower was corrected to take into effect of energy loss in material between
the TPC and the BEMC and the pseudo-rapidity dependence by calculating correction
factors in GEANT. These GENAT corrections factors were calculated for each pseudo
rapidity ring as a function of AR = \/A¢? + An? from the center of the tower during
the year 2009 [2] . The E/p obtained using this method refered to as the single tower
method in this note.

In the Run 13 BEMC calibration, an alternative method (2x2 cluster method) was
developed to obtain the tower energy E, by measuring the energy of the maximum

9
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2x 2 cluster inside a 3x 3 cluster which also include the center tower where the electron
track is matched. Figure || illustrates the single tower and the 2x2 cluster method.
Once the E/p ratio is constructed for every candidate track, a average F/p value is
then obtained by fitting the £'/p distributions over all the tracks with in the 120 towers
of each eta ring using a gaussian function for the signal and an exponential function
to describe the background. A typical E/p distribution for electron tracks in a given
eta ring (n ~ 0.75) is shown in Figure |§| The mean FE/p value, was extracted from
the gaussian mean of the fitted function and was then used to calculate the absolute
calibration constant defined as,

o Cfrelative
Cabsolute - <E/p> (3)

where Cleative 18 defined in Equation

E / p in single tower method
Ewax in 3x3
E/p= —
p
E / p in 2x2 cluster method Ezovax in 3x3
E2x2Max in 3x3
Y E/p=——

(a) 2x2 Cluster Method

(a) Single Tower Method

Figure 5: Methods used in the Run 13 BEMC absolute gain calibration.

3.1 Trigger option of the data sample

According to the BEMC calibration reports from previous years, the trigger biases
in the data samples have contributed a significant amount of systematic uncertainty.
Moreover, various momentum dependance of the electron E/p have been observed for
different types of triggered events. Therefore in the Run 13 calibration, a study was
conducted to find an unbiased electron sample. The high tower (HT) and non high
tower (non HT) triggered events were used in the study. The HT trigger condition
requires the tower energy to pass a set trigger threshold. Table [I| shows the various
trigger conditions and tower energy threshold values for the trigger options used for
this study.

Based on the previous studies, while the HT events have shown a clear momentum
dependance, the non HT events have shown a stable E/p over a large range of the
momentum. Similar performances were found for the HT trigger events (BHT1 and
BHT3) and the non HT trigger events (JP2) of the Run 13 data set. Similar to
the prior year’s observations a clear momentum dependance was observed for the HT
events (Figure [7a] and and a stable behavior for non HT events (Figure [7d). The
mean values of E/p from the fitted curve of the E/p distribution of the electrons
in momentum slices of width 0.5 GeV is shown in Figure [f{dl Near the thresholds,

10
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Figure 6: A typical electron F/p spectrum for one of the eta rings (black points),
gaussian fit to the signal region (blue curve), exponential fit to the background region
(red curve), and the sum of the two fits (black curve).

Trigger
Trigger Name gll;resh-
(GeV)
Barrel High Tower Trigger 1 [ BHT1— didFire()] 4.25
Barrel High Tower Trigger 3 | BHT1— didFire()] 7.75
Jet Patch Trigger 2 [ JP2— didFire()] ~ 14

Table 1: Trigger options used to select various data samples.

the HT events select electrons with a high E/p in comparison to those away from
the threshold. In addition, a continuous drop in F/p with increasing momentum was
seen well above the trigger threshold for the high tower events. More details about
HT trigger momentum dependance can be seen in appendix A. This effect is clearly
visible in the BHT1 events. Due to this strong momentum dependance of E/p, the
BHT1 events were not used in this analysis. The JP2 and BHT3 events were used in
this analysis in the momentum ranges of 0 to 10 GeV and 0 to 3 GeV respectively.
The upper momentum limit for BHT3 was determined from the E/p distributions of
momentum slices of width 0.5 GeV as shown in (Figure [§)) in order to avoid possible
trigger thresholds effects. For the BHT3 events a second background peak emerged

11
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at momentum values above 3 GeV. Therefore only events below a momentum of 3
GeV were used. In addition, the HT events showed a systematically lower E/p when
compared to the JP2 events. This difference was added to the systematic uncertainty.
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Figure 7

3.2 Electron Selection Criteria

A set of vertex, track selection particle identification (PID), and calorimeter tower en-
ergy isolation cuts were used to select good electron candidates. Due to large amounts
of pileup in the TPC, tracks with nHits > 25 were used. Primary vertices with a rank
above 1e6 and |Zyepier| < 60cm were used. Candidate tracks were also required to
have a dE /dX between 3.5¢-6 and 5.0e-6 (Figure [L0a]). Furthermore for good electron
PID, nSigmaElectron is required to be in between -1.0 and 2.0 (Figure , while
nSigmaPion is required to be above 3.0 (Figure . In the single tower method,
the energy is measured by matching the electron candidate tracks to a single tower
and requiring that the track projection also exits the same tower and that no other
tracks are matched to towers forming a 3x3 cluster around the track-matched tower
(center tower). Furthermore, the center tower of the 3x3 cluster must also contain
the maximum energy of the towers forming the cluster. These 3x3 cluster require-
ments help reduce the shower leakage from neighboring towers. The shower leakage

12
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Figure 9: F/p distributions of momentum slices of width 0.5 GeV of JP2 trigger events

when using the single tower method is corrected using a GEANT based simulation,
where correction factors are calculated based on the fiducial radius, which is defined
as the distance between the center of the tower and where the track hits the tower
face. Unfortunately, these corrections were found to be ineffective at fiducial radii
above 0.02. Therefore a fiducial radius (TDR) cut of 0.02 was used. Finally, in this
study electrons with in the momentum range of 2.0 GeV to 10 GeV were selected. A
significant variation of E/p for low momentum (1.5 - 3 GeV) electrons was observed,
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Figure 10

3.3 Electron’s E/p values in pseudo-rapidity rings

The average E/p values were relatively constant at mid-rapidity, corresponding to the
inner 7 rings (rings 3 to 38), and found to be within 5%. However at larger rapidities,
corresponding to the outer 7 rings with |n| ~ 1.0 ( rings 1,2,39, and 40), £/p was found
to decreased by about 20%. The large variation at large rapidities was attributed to
the increase in dead materials between the TPC and the front of the calorimeter tiles,
which causes showers to begin earlier and allows more energy to escape the tower.
In addition to this the systematically lower E/p behavior that was observed at low
momentum (p j 3.0 GeV) further decreased, which effectively enhanced this difference.
As a result, the pow momentum cut of n rings 1, 2, 39 and 40 was increased from 2.0
to 3.0 GeV. Figure shows the distribution of the average F /p values of all 40 7 rings
in the BEMC. Each ring covers a window of An of 0.05. Rings 1 and 40 cover 7 ranges
between [-1,-0.975] and [0.975,1] while rings 20 and 21 cover the n ranges between
[-0.025,0] and [0,0.025], respectively. These E/p values were then used to calculate
absolute gain values for each tower according to the formula shown in Equation [3

14
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« 4  Results

29 For the purpose of the preliminary W analysis, the absolute gain constants from the
0 single tower method were used. A comparison of the average gain constants from
251 previous year’'s BEMC calibration gain constants are shown in table [2| Table [2] shows
22 the percentage difference of the average gain constants in each year/period compared
3 to the Run 13 period 1 results. While Run 13 period 1 gains were approximately 3%
4 larger than Run 9 p-p 200 GeV gains, they were approximately 5% larger than Run
5 12 p-p 200 GeV gains. Furthermore, the Run 13 period 2 gains were found to be
6 3% larger than the Run 13 period 1 gains. The consistency of the calorimeter gain
257 constants, which were obtained at a low energy scale (0-15 GeV), were checked at a
s high energy scale using high energy probes such as the Z boson invariant mass and W
0 boson Jacobean peak. This check revealed that the gain constants obtained at the low
%0 energy scale were consistent at high energy levels with in the systematic uncertainty
261 as shown in Figures [12] [13]in comparison to MC.

_Z_ZmassUnlike _Z_ZmassUnlike
35| Entries 337 Data 600/ Entries 3184 Z—>e++e' MC
Mean 81.24 Mean 79.09
RMS 17.98
RMS 18.95
2
30| x2/ndf 20.1/16 500| 2/ ndf 315.3/17
Constant 35 +3.0
M Constant 507.6 +16.8
lean 88.89 +0.38
25| sigma 5.788 + 0.353 Mean 88.83 + 0.08
400/ Sigma 3.387 +0.085
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Figure 12: The invariant mass distribution of Z boson from STAR Run 2013 data (a)
(after run 13 gains applied) and Z — e + e~ MC (b) fitted with an gaussian function
in the window [70,110].
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Figure 13: E% distribution of W (a) and W~ (b) candidate events (black) from STAR
Run 13 data (after run 13 gains applied), W — ev MC signal (red).

Run 9 (200 | Run 12 (200 | Run 13
GeV) GeV) (510GeV)
period 2
Run 13| < 4% < 5% > 2.5%
510GeV  pe-
riod 1

Table 2: Comparisons of the absolute gain constants from Run 13 period 1 to Run 13
period 2 and previous years.

5 Systematic Uncertainty

To characterize the uncertainty, the effect of various parameters were examined. After
making an estimation on each parameter’s effect to F/p, we measured overall system-
atic uncertainty of the STAR 2013 p-p 510 GeV BEMC calibration to be 3.0 % for
period 1 and 2.0 % for period 2.

The most significant contribution was introduced by the dependance on the lower mo-
mentum cut. A nominal momentum cut of 2.0 GeV was used as the lower momentum
cut in the analysis. The momentum range available in the study was from 1.5 GeV
to 10 GeV. Negligible variations in E/p were found for momenta above 10 GeV, while
there was significant E/p variation at lower momenta. In the momentum region of 1.5
to 3.5 GeV (1.5 to 3.0 GeV), E/p was found to steady increase for Run 13 period 1
(period 2). The systematic uncertainty due to this momentum dependance was calcu-
lated by considering the absolute difference between F /p values at momenta of 1.5 and
3.5 GeV (1.5 and 3.0 GeV) for Run 13 period 1 (period 2). This effect introduced an
uncertainty of 2.2% for period 1 and 1.1% for period 2. The momentum dependance
of F/p is shown in Figure , where F//p shows large variations up to a momentum of
about 3 GeV and then becomes stable.

The second most significant contribution to the uncertianty was introduced by
the systematic difference between HT and non HT triggered events, as discussed in
section 3.1 above. In order to calculate the uncertainty from the trigger bias, three
different scenarios each with a different trigger options were considered. The average
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Figure 14: Average F/p as a function of momentum.

E /p value over the whole detector was obtained separately for each scenario. The first
scenario (referred to as Ry) used only non HT (JP2) triggered events in the momentum
range of 1.5 GeV to 10 GeV. The second scenario (referred to as Ry) used only HT
(BHT3) triggered events in the momentum range of 1.5 GeV to 3 GeV. Finally, the
third scenario (referred to as Ryeqsurea) Used a combination of the two trigger options
from scenarios R; and Ry in the momentum ranges specified above. This third trigger
option was the trigger option used for the analysis. For the HT trigger, the upper
momentum limit was restricted to 3.0 GeV in order to avoid significant bias from the
trigger threshold effects. The largest deviation to (Ryeasureq) from either Ry or Ry
was then defined as the systematic uncertainty due to the trigger bias. This effect
introduced an uncertainty of 1.4 % for Run 13 period 1 and 1.3 % for Run 13 period
2 and is shown in Figure [15]

0.95
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Figure 15: Average E/p for three trigger options.

The dependance of the AR cut on E/p was analyzed. In particular, the simulation
correction for the tower energy is dependent on the AR value. The dependance was
checked separately for inner, outer rings and as a whole considering the entire detector.
A similar dependance was seen for both the inner and outer rings. Figures (16| and
show a small spread of 0.4% (0.3%) of the average F/p around the mean value for the
whole detector for period 1(period 2). Therefore no systematic uncertainty due to the
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Figure 16: Average E/p as a function of AR for period 1.
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Figure 17: Average F/p as a function of AR for period 2.

The time dependance of E/p was estimated by calculating the average F/p for
the whole detector per day over the entire Run 13 running period. A systematic
dependance of less than 1% was observed for periods 1 and 2. Figures and
show the time dependance of the E/p for period 1 (top panels) and period 2 (bottom
panels). The left panels plot the average E/p vs. day, while the right panels plot the
histograms of the E/p for each of the days. The spread of the E/p around the mean
value was assigned as the systematic uncertainty. This effect introduced an uncertainty
of 0.8% for period 1 and no uncertainty was assigned for period 2.

The luminosity dependance of F/p was estimated by calculating the average E/p
for the whole detector by dividing the data set into several ZDCx ranges. During the
period 1 running a small uprising behavior in F/p was noticed with increasing ZDCx
rate as shown in Figure . The left panel shows the average E/p vs. ZDCx rate, and
the right panel shows the E/p spread. The F/p enhancement introduced less than
a 0.5 % change at the highest ZDCx rate for period 1. The average E/p for period
2 was found to be even more stable, as shown in Figure Therefore a luminosity
dependent systematic uncertainty was not assigned for either periods 1 or 2.
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Figure 18: Average F/p for period 1. Left panel: as a function of time (per day), right

panel: histogramed E/p values.
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Figure 19: Average E/p for period 2. Left panel: as a function of time (per day ),
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The systematic uncertainty due to the crate dependance was evaluated by calcu-



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

1 F 2/ ndf 55.93/16 s :
o8- Run 13 - Period 2 PO 0.9287 + 0.003761 r Run 13 - Period 2 Entries 7
R - Pl -9.899e-09 + 1.187e-08 - Mean  0.9261
2 0.96— - RMS  0.004068
~ - -
= C -
Vo004 ] al
C [ L — ! ; I l C
0.92— Fpl ‘ C
r ol
0.9_— C
0.88[— 1
0.86 C
T R R T SRR VT T: )| AP EPAFUPITSN NPAFUPUFIN PO I L B PN OO T 1 ] O T P O
200 250 300 350 200 250 9 0905 091 0.915 092 0925 0.93 0935 0.94 0.945
x (Hz
ZDCx (Hz) <E/p>

Figure 21: Average E/p for period 2. Left panel: as a function of ZDCx (pb ).
Right panel: F/p spread across ZDCx range.

lating the average E/p per crate. Overall, a reasonable spread was observed as shown
in Figures [22| and [23| for both period 1 and period 2. The left panels show the average
E/p as a function of crate ID, and the right panels show the spread in the E/p values.
The spread of E/p between the crates was assigned as the systematic uncertainty. The
crate to crate dependance introduced an uncertainty of 1.2% for both period 1 and
period 2.
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Figure 22: Average E/p per calorimeter crate for period 1. Left panel E/p vs. crate
ID. Right panel: Spread of E/p from crate to crate.

The total uncertainty of period 1 comes from adding in quadrature the 1.4% from
the trigger bias, 2.2% from the low momentum cut, 0.8% from the time dependance,
and 1.2% from the crate dependance, resulting in a 3.0% total systematic uncertainty.
Similarly for period 2, total uncertainty of 2.0% is assigned. Table [3]lists the uncer-
tainty contributions and total uncertainty for periods 1 and 2.

6 Conclusion

The BEMC has been successfully calibrated using MIPs and electrons for run 13 pp
510 GeV running period. The calibration uncertainty, quoted as a systematic bias,
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Figure 23: Average F/p per calorimeter crate for period 2. Left panel E/ vs. crate
ID. Right panel: Spread of E/p from crate to crate.

Systematic  Error | Systematic Error
Period 1 [%] Period 2 [%]

Trigger bias 1.4 1.2

Low momentum cut 2.2 1.1

Tower-track AR 0 0

Time Dependance 0.8 0

Luminosity (ZDCx) dependance | 0 0

Crate Dependance 1.2 1.2

Total (Added in quatrature) | 3.0 2.0

Table 3: Contributions to total systematic uncertainty.

has found to be in the order of run 12 pp 200 GeV calibration. Future calibrations
will be able to make use of this study to correct the biases observed here and improve
the calibration uncertainty.

Momentum Dependance of HT trigger For HT triggers one expect to have stable
E / p for electrons well above the trigger thresholds. But we observed significant
momentum dependance well above the trigger thresholds. In particular this was clearly
observed for BHT1 trigger. To understand this behavior we have checked various
distribution before placing PID cuts which used to remove hadrons tracks from the
data sample. After placing dE/dX cut we use nSigmaPion cut to remove remaining
hadrons. The cut we used is a linear cut of nSigmaPion equal to 3.0. However when
momentum increases such a linear cut of nSigmaPion seems inefficient. The Figure 77?7
shows distributions of nSigmaPion of BHT1, JP2 and BHT3 triggers. Tower peaks
are visible in distributions where electrons are peaks around 4.0. For JP2 and BHT3
trigger two peaks are much separable in comparison to BHT1 trigger. The Figure 77?7
shows the distributions of nSigmaPion vs E / p in momentum slices of width 1 GeV.
Track momentum above 3.5 GeV a clear peak emerge nSigmaPion below 3.0 around E /
p equal to 1. These tracks seems to be hadrons measured to have quite a larger energy
in the calorimeter towers as a results of the threshold effect. Then the momentum
above 6.5 where region well above the thresholds this peak stared to move to the lower
E / p values than 1.0. The same behavior can be observe even nSigmaPion above 3.0.
Moreover the statistics above 3.0 are very small. Since the cut of nSigmaPion equal to
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3.0 is not effective. Therefore when the momentum well above threshold all the tracks
in the data sample showing E / p below 1.0 indicating that those are in fact hadrons
tracks. In contrast to BHT1 trigger in JP2 trigger ?? one can see a clear peak around
E / p around 1.0 in all the momentum regions.
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