

The purposes of the L4 refactoring exercise are:

1. Handle the synchronization of the CPU & Xeon Phi

2. Make maximum use of both CPU and Xeon Phi

3. Hide (as much as possible) the mechanical difficulties
 From the tracking/analysis code.

We will effectively replace the L4Interface::handleEvent() Call
With 3 calls: init_proc(), simu_proc() & decide().

There will be a strict order for the function calls in each event:

1. init_proc(rdr, buffer) is called first
2. simu_proc(rdr, buffer, n) are called after init_proc() is
 Finished. There could be several such functions
 all called at the same time.
3. decide(rdr, buffer) is called after ALL simu_proc()
 Functions have finished.

The l4Interface class functions will be declared
static, so they can not use any non-local variables. The
reason is that the same L4Interface class will not be used for
The various calls.

My suggestion would be to create an “L4EventData” structure
With all variables that need to be used in different calls,
and store it in the “initial_result” region of the buffer

1

2

...

500

Event Buffers:

Input Event
(Read Only)

initial_result

simu_result_0

simu_result_1

...

simu_result_n

L4 results

Each Buffer:

Assume:
* 500 Buffers
* Input Event (30MB)
* CPU Stage 1 (6MB?)
* xeon_phi results (6MB?)
* xeon_phi “n” (1?)
* L4 results (MAX 6MB)

* Total size: 24GB

The buffer structure needs to be somewhat more complex:

* L4Task keeps buffers for 500 events
* Each of the functions has its own fixed memory within its buffer
* A function can only read from prior regions to be filled
 (The simu_proc() functions can not read each others memory)
* A function can only write to its own memory.
* The L4Results can keep the same “hlt_blob” structure as before
 But I assume that these pointers may point back to previous
 Results...

L4 system structure:

l4Task

L4EthTask

L4EvpTask

L4EvbTask

L4CpuTask: ~(40 tasks)

L4ZeonPhiTask: (~480 tasks)

L4Interface:

initial_proc(rdr, buffer)

decide(rdr, buffer)

The overall structure is the same, except:
1. L4TriggerTask is split into CpuTask & ZeonPhiTask
2. handle_event(rdr, *output_blobs) is replaced by 3 stages
 initial_proc(), simu_proc() & decide()

...
L4Interface:

simu_proc

(rdrbuffer,0)
simu_proc

(rdr,buffer,1)
simu_proc

(rdr,buffer,n)...

Allocation of buffers for the xeon phi nodes:

* It’s not yet clear what, if any, specific criteria are
 required.

* My plan is to add a function init() to the L4 interface
 which will be called when the L4TriggerTask is launched.
 This should allow the setup and storage of the xeon_phi
 control data and/or sockets to be handled. This information
 is tied to the thread not to any given event
 which will potentially be farmed out to multiple threads.

* If the xeon phi memory needs to be tied to specific events
 (rather than copied into the buffers as I’ve specified)
 Then we will need to discuss the requirements more and
 modify the buffer structure and/or the buffer allocation
 Scheme.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

