

Measurement of Total and Elastic Cross Sections in p+p collisions at $\sqrt{s} = 200$ GeV with the STAR Detector at RHIC

Włodek Guryn and Bogdan Pawlik

For the STAR Collaboration

- 1. Experimental setup at STAR
- 2. Data set
- 3. Analysis
- 4. Distributions of physics variables (-t, ϕ)
- 5. Simulations and efficiency, acceptance corrections
- 6. Results: $d\sigma/dt$, B-slope, σ_{tot} , σ_{el}

Experimental Setup

Top view

In this configuration, RP program at STAR was able to acquire large data samples without special running conditions – mostly for CEP, SDD and CP analyses (see talks by L. Fulek and R. Sikora at this conference).

Data Analysis

• Trigger was very inclusive: it required only a signal in at least one RP on each side.

$$\mathbf{RP_ET} = (\mathbf{E1U} \vee \mathbf{E2U} \vee \mathbf{E1D} \vee \mathbf{E2D}) \wedge (\mathbf{W1U} \vee \mathbf{W2U} \vee \mathbf{W1D} \vee \mathbf{W2D})$$

- Need to minimize background and maximize efficiency.
- To reduce background need angle reconstruction => two RPs on each side in up down combination.

$$\begin{aligned} \mathbf{E}\mathbf{U} &= (\mathbf{E}\mathbf{1}\mathbf{U} \wedge \mathbf{E}\mathbf{2}\mathbf{U}) \; ; \; \mathbf{E}\mathbf{D} = (\mathbf{E}\mathbf{1}\mathbf{D} \wedge \mathbf{E}\mathbf{2}\mathbf{D}) \\ \mathbf{W}\mathbf{U} &= (\mathbf{W}\mathbf{1}\mathbf{U} \wedge \mathbf{W}\mathbf{2}\mathbf{U}) \; ; \; \mathbf{W}\mathbf{D} = (\mathbf{W}\mathbf{1}\mathbf{D} \wedge \mathbf{W}\mathbf{2}\mathbf{D}) \\ \mathbf{E}\mathbf{T}\mathbf{1} &= (\mathbf{E}\mathbf{U} \wedge \mathbf{W}\mathbf{D}) \\ \mathbf{E}\mathbf{T}\mathbf{2} &= (\mathbf{E}\mathbf{D} \wedge \mathbf{W}\mathbf{U}) \end{aligned}$$

- Use events with four track points one track point per Roman Pot.
- Finally, choose fiducial region away from the apertures of DX magnet and beam pipe in front of the RPs.

Collinearity

$$\vec{p_1} = -\vec{p_2} \Rightarrow (\Theta_{x1}, \Theta_{y1}) = (-\Theta_{x2}, -\Theta_{y2}) \Rightarrow \Delta\Theta_x = \Delta\Theta_y = 0$$

Since the elastic events must satisfy collinearity condition collinearity within $2\sigma_{\theta}$. Namely $|\theta_{West} - \theta_{East}| < 2\sigma_{\theta}$, where $\sigma_{\theta} = 255~\mu rad$, is required.

Events are well centered within 2σ and 3σ contours.

Geometrical Acceptance GEANT4 MC: I

Choice of geometrical acceptance (t,ϕ) plane

$$0.04 \le |t| \le 0.16[(GeV/c)^2]$$

$$79.5 \le |\phi| \le 101.5[deg]$$

$$2.00 \le \theta \le 4.00[mrad]$$

Geometrical Acceptance and Event Yields

Choose region away from steep variation and edges of acceptance

Condition	# events	
ET triggered	6.607M	
ET accepted	3.974M	
Collinear	2.696M	
4 PT Collinear	1.100M	
4 PT Collinear Geom.	0.667M	

667K events used for the final analysis

GEANT4 MC: Background Study

- 1. Each distribution is normalized to 1, independently
- 2. Normalization MC to Data done by normalizing peaks
- 3. Background mostly due to the rescattered protons in the the beam pipe and the DX magnet
- 4. Background is small 0.3%, after $2\Delta\Theta$ cut and after geometrical acceptance cut

Results: Corrected $d\sigma/dt$ and Fits

$$\frac{d\sigma_{el}}{dt} = \frac{1+\rho^2}{16\pi(\hbar c)^2} \cdot \sigma_{tot}^2 \cdot e^{-B|t|}$$

$$\sigma_{tot}^2 = \left(\frac{16\pi(\hbar c)^2}{1+\rho^2}\right) \left. \frac{d\sigma_{el}}{dt} \right|_{t=0}$$

$$\sigma_{el} = \int \frac{d\sigma_{el}}{dt} dt$$

The value of $\rho = 0.128$ from COMPETE model was used*.

* Phys. Rev. Lett. 89 (2002) 201801

Results

Fit results

FILTER	$\mathrm{d}\sigma_{el}/\mathrm{d}t _{t=0}~\mathrm{[mb/~GeV^2]}$	$B [GeV^{-2}]$	$\sigma_{tot} [mb]$	$\sigma_{el} \; [\mathrm{mb}]$
4PT-COL	134.3 ± 1.6	14.0 ± 0.2	50.7 ± 0.6	9.6 ± 0.1
4PT-GEO	136.7 ± 0.8	14.2 ± 0.2	51.3 ± 0.4	9.6 ± 0.1

	Quantity		Statistical	Systematic
name	units	Value	uncertainty	uncertainty
\boldsymbol{B}	$[(GeV/c)^{-2}]$	14.2	± 0.1	± 0.3
σ_{el}	[mb]	9.6	± 0.1	± 0.7
σ_{tot}	[mb]	51.3	± 0.4	$^{+2.1}_{-1.9}$

The main source of systematic uncertainty are: luminosity measurement and beam tilt angle.

Comparison with the World Data

STAR results compare well with the world data and the COMPETE predictions: Phys. Rev. Lett. 89 (2002) 201801

Plots form the TOTEM Collaboration https://arxiv.org/pdf/1712.06153v2.pdf with STAR preliminary results added

10

Summary

- 1. The STAR experiment at RHIC measured elastic differential cross sections in the |t|-range [0.045, 0.125] (GeV/c)² in p+p collisions at $\sqrt{s} = 200$ GeV.
- 2. The resulting values of B-slope, σ_{tot} , σ_{el} are:
 - Slope parameter B = 14.2 ± 0.1 (stat) ± 0.3 (syst)(GeV/c)⁻²
 - The total cross section σ_{tot} = 51.3 \pm 0.4 (stat) + 2.1 1.9 (syst) (mb) COMPETE Predictor, Phys. Rev. Lett. 89 (2002) 201801 σ_{tot} = 51.76 \pm 0.12 (stat) +0.4 0.2 (syst) mb
 - The elastic cross section $\sigma_{\rm el}$ = 9.6 \pm 0.1 (stat) \pm 0.7 (syst) mb

At this point, the largest syst. uncertainties are: 1% due to the beam tilt angle and 7% due to the luminosity. We expect the luminosity uncertainty to be about 3% after the careful calibration.