$\Delta \gamma \{\text{ZDC-SMD}\}\ \text{in Au+Au at 200 GeV (run16)}$ Gang Wang (UCLA) ### Data set: run16 After all cuts, ~1.88 billion minimum-bias-trigger events in the 0-80% centrality range. Bad run list, pile-up rejection, and centrality definition follow the previous publication. ## **Event cuts** $V_{r} < 2 \text{ cm}$ $|V_{z}| < 30 \text{ cm}$ $|V_{z,TPC} - V_{z,VPD}| < 3 \text{ cm}$ ### Particle cuts $|\eta|$ < 1, p_T > 0.2 GeV/c, p < 1.4 GeV/c, N_{hits} \geq 15, DCA < 3 cm, n_{σ_p} < -2 An extra inefficiency is introduced due to the n_{σ_p} cut, and is corrected for. #### 4000 × 10³ 30-40% Raw Y., ×10³ Entries 2.532335e+08 Flattened 4., ## EP{ZDC-SMD} The event planes from ZDC-SMDs are shifted to be flat. The 1st-order EP resolution $\sqrt{\cos(\Psi_{\rm F}-\Psi_{\rm W})}$ looks reasonable. v₂{ZDC-SMD}, as well as the distributions of single and pair q₂², looks reasonable. pai q²_{2,PPOI} # Four ESS Recipes In the 30-40% centrality, the ordering of (a) > (b) > (c) > (d) is the same as at other beam energies, and the same as in model simulations. single q_2^2 single v_2 pair v_2 # Optimal ESS (c): pair q₂² and single v₂ In this example of 30-40% centrality, intercepts for both $\Delta \gamma^{112}$ and $\Delta \gamma^{132}$ are consistent with zero. Intercept* $(1-v_2)^2$ as the unbiased signal. ## Centrality Dependence At each centrality, both $\Delta \gamma^{112}_{ESS}$ and $\Delta \gamma^{132}_{ESS}$ (blue cross) are consistent with 0. ## Beam-Energy Dependence The new data point indicates a null result with a good precision. # Backup slides ### Run16 vs Run7 Good consistency between run16 and run7 (both with efficiency correction), though slightly different PIDs, p_T and p cuts, and different EPs.