Title

Reconstruction of K**(892) in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV He Zheng (UCLA) for the STAR Collaboration

Abstract

The Relativistic Heavy Ion Collider (RHIC) produces a hot, dense and deconfined Quantum ChromoDynamics (QCD) medium, called the quark-gluon plasma (QGP), with Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The K**(892) resonance is a short-lived particle with a lifetime shorter than the expected lifetime of the QGP. The K* production may provide an effective tool to probe the QGP properties, such as strangeness enhancement. Experimentally, K** analysis is difficult and less studied previously because of large combinatorial background. In recent years, improvements in data sample statistics and particle identification capability promise better K** measurements.

In this presentation, we report the reconstruction of $K^{*\pm}$ resonance via the hadronic decay channel $K^{*\pm}(892) \to K_S{}^0\pi^{\pm}$ as a function of transverse momentum (p_T) up to 5 GeV/c for various collision centrality classes. The data are Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV collected in the year 2011 run from the STAR experiment. Physics implications of our measurements will also be discussed.