Transverse Forward Physics at STAR (FMS) April 29, 2010 Steve Heppelmann

Outline

- The Ideas
- Current STAR FPD/FMS Surprises
- Sensitivity of Future Measurements
- Photons
- Drell Yan
- Run 9 Setup Experience

The Ideas: Transverse Forward Physics

<u>in STAR</u>

- pQCD with collinear factorization <u>should</u> explain hard scattering <u>with</u> <u>longitudinal polarization</u> but transverse SSA vanishes in that framework.
 - Vanishing parton helicity flip
 - Leading order "real" scattering amplitudes.
 - Transverse single spin asymmetry (SSA) require helicity flip and imaginary amplitude.
 - SSA not allowed (in leading order/twist)
- Expanding the scope of pQCD. Generalized extensions to collinear factorized.
 - physics beyond collinear factorization
 - Generalized Parton Distributions
 - orbital angular momentum of partons
 - Sivers effect
 - Collins fragmentation
 - QCD Beyond Factorization

PQCD Collinear Factorization

- Gives meaning to quark and gluon, the confined internal degrees of freedom (DOF) in QCD.
- Provides concrete connections between these internal DOF and experimental observables. (Jets, some hadrons, photons)
- Gives an experimental connection to a description of nucleon and non-perturbative bound state (Nucleon parton densities).
- Provides a recipe for approximate calculation of cross sections for certain interactions in certain kinematic regions.
- Has a <u>well defined kinematic</u> region where calculations are most likely dependable.

Generalized Factorization PQCD++

- Applies to a wider variety of experimental measurements.
- •Gives similar meaning to quark and gluon, the confined internal degrees of freedom (DOF) in QCD. (same)
- Provides concrete connections between these internal DOF and experimental observables. (Jets, some hadrons, photons) (same)
- Gives an experimental connection to a description of nucleon and non-perturbative bound state (Nucleon parton densities). (same)
- Provides a recipe for approximate calculation of cross sections for certain interactions in certain kinematic regions??? (perhaps same)
- Has less clearly defined rules as to when calculations are most likely dependable.

Strong Interactions

Collinear Factorization

Cross Section~ (Probability to select required parton A (x_1) from proton 1) x (Probability to select required parton B (x_2) from proton 2) x (Probability that partons A+B => C + X) $f_1(x_1) \sim (1-x_1)^3$

x (Probablity that parton C Fragments into observed final state)

For Forward Production of Pi/Eta ..

$f_2(x_2) \sim 1$

 $x_1 \rightarrow 1$

 $\sigma(x) \propto \int dz f_1\left(x \sim \frac{x_F}{Z}\right) \sigma_{parton} D_{parton}^{\pi^0}(z)$ $q(x) \sim (1-x)^3$ $d(z) \sim (1-z)$ $\sigma(x) \propto (1-x_{\rm F})^5 + Order[(1-x_{\rm F})^6]$ $\sigma(x) \propto (1-x_{\rm F})^{2}$

Forward PiO Cross Sections Scale Like seen in ISR.

At Large X_F (ie. $X_F > 0.4$), the Pi⁰ fragment carries most of the of the jet momentum (<z> > 75%).

Alternatives to Factorized PQCD Lead to Very Different Cross Sections

• Preliminary look at invariant cross section are likely consistent with conventional

$$\frac{\left(1-x_F\right)^5}{p_T^6}$$

 In contrast, analysis of low p_T Regge type processes lead to <u>to a</u> <u>different form</u> for the dependence of the cross section on (1-x_F) as Feynman x_F approach unity.

Regge Cross Section
$$\propto (1-x_{_F})^2$$

L.L.FrankFurt and M.I. Strikman, Vol. 94B2 Physics Letters, 28 July 1980. and Private Communication.

Sivers Model

Difference Between pi0 and eta A_N?

- A fast quark in the polarized proton (probably a u quark) has initial **transverse motion relative to the incident proton direction**. The sign of this transverse momentum is connected to the proton transverse spin.
- The jet has transverse momentum

$$P_T = p_T^{hard \, scattering} + k_T$$

- <k_T > changes sign if the spin and angular momentum is reversed.
- "T" symmetrical "-k_T" amplitude absorbed as quark in one nucleon passes through gluon field of other nucleon. "Wilson Line"
 Breaking of Factorization!!!!
- The jet fragments with large z to produce a **meson that is moving in the direction of the jet**, with nearly p_T of the jet.
- Dependence of **initial state** $\mathbf{p}_{\mathbf{T}}$ upon proton spin leads to Sivers $A_{\mathbf{N}}$.
- Shape of cross section similar for pi0 and eta.
- This situation should be the **same whether** the jet fragments into a **pi0 or an eta**.

 $A_N(P_T) =$ $\sim \frac{1}{\sigma} \frac{d\sigma}{d\sigma} \langle k_T \rangle$

Collins Model

${\bf k}_{\rm T}\,$ and thus ${\bf A}_{\rm N}\,$ vanishes as Z approaches 1

- Consider large eta A_N (perhaps of order unity)
 X_F~0.75 , Z~ .9 and p_T~3.9 GeV/c.
- Any associated jet fragments will carry limited transverse momentum,

$$k_{T} \sim \frac{(1-Z) p_{T}}{\frac{2}{(1-x_{F})^{5}}}$$

- If the cross section is given by
- The Maximal asymmetry from fragmentation

 $p_T \rightarrow p_T + Sin(\phi)k_T$

 ϕ = fragmentation azimuthal angle from spin direction

• Leads to an extreme limit for A_N from fragmentation,

$$A_N < \frac{6k_T}{p_T} \sim 3(1-Z) \sim .6$$

This is the most extreme case including

- 100% transverse parton polarization
- the maximum possible Collins Fragmentation function.

Current STAR+FPD/FMS Surprises

P_t Dependence in Calculations of A_N

•Sivers Effect / Collins Effect

•introduce transverse spin dependent offsets in transverse momentum

•independent of the hard scattering (definition of factorization).

 $P_T \Longrightarrow P_T \pm k_T$

"±" depending on the sign of proton transverse spin direction. <u>Using our</u> (STAR) measured cross section form:

$$d\sigma^{\uparrow} \propto rac{1}{\left(P_T - k_T\right)^6} \quad d\sigma^{\downarrow} \propto rac{1}{\left(P_T + k_T\right)^6}$$

$$A_{n} \equiv \frac{d\sigma^{+} - d\sigma^{\star}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{6k_{T}}{P_{T}} + O\left(\frac{k_{T}}{P_{T}}\right)$$

Higher Twist Effects:

Qiu and Sterman Kouvaris et. al. **Phys.Rev.D74:114013,2006**.

 A_N Fall as $1/P_T$ as required by definition of higher twist.

All of these models lead to $A_N \sim \propto 1/P_T$

Comparison between η production and π^0 production?

- Gluons or η has Isospin I=0.
- u quark has Isospin I=1/2
- π^0 has **Isospin I=1**.
- But we expect both mesons to come from **fragmentation of quark jets**.

 $I = 0 \begin{cases} \eta \approx + d\overline{d} - s\overline{s} \\ \gamma = + d\overline{d} - s\overline{s} \\ \eta' \approx + d\overline{d} + 2s\overline{s} \\ \gamma = -\frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$ $I = 1 \begin{cases} \pi^0 = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d}) \\ \theta_p \sim -19.5^\circ \end{cases}$ *Assume η, η mixing angle: $\theta_p \sim -19.5^\circ$

• For Sivers Effect: Asymmetry is in the jet and should not depend on the details of fragmentation.

- For Collins Effect: Asymmetry reflects fragmentation of the quark jet into a leading η or π^0 meson. Differences in fragmentation could relate to:
 - Mass differences?
 - Isospin differences?
 - Role of Strangeness?
 - But Collins Effect Should be suppressed when $Z \rightarrow 1$

For Fixed X_{F} , the asymmetry A_N does not fall with P_t as predicted by models.

- NLO PQCD <u>does describe</u> the size and shape of this forward pp cross section.
- Model calculations (Sivers, Collins or twist-3) <u>can explain</u> the X_F dependence of A_N.
- Flat or increasing dependence of A_N on P_T

U. D'Alesio, F. Murgia, Phys. Rev. D 70, 074009 (2004).
J. Qiu, G. Sterman, Phys. Rev. D 59, 014004 (1998).

Theory Score Card For Factorized QCD Picture for Pi & Eta Transverse A_N

 ✓ Cross Section for Pi0 agrees with PQCD (Normalization and Shape) ✓ Dependence of cross section on X_F and Pt may be similar for Pi0 and Eta at large X_F as expected. ✓? Ratio
Eta/Pi0
nominal
40% - 50%
Yet to be
determined.

x Pt Dependence of Pi0 A_N .

Inconsistent with $A_N \sim 1/p_{T.}$

Can a large difference in asymmetry between Pi0's and Eta's be understood in either Collins or SIvers Model?

With FMS, STAR has Expanded Rapidity Coverage -1<Y<4.2

STAR Forward Meson Spectrometer

2.5 < Y < 4.0

Sensitivity of Future Measurements

200 GeV Transverse Spin Program

\sqrt{s}	Transverse Process	Collins	Sivers	Sivers SIDIS Sign Change	$\int L$	Detectors
	$p^{\uparrow} + p \rightarrow \pi^0 + X$	*	*			
	$p^{\uparrow} + p \rightarrow \eta + X$	*	*			FMS
	$p^{\uparrow} + p \rightarrow \gamma + X$		*	*	$30 \ pb^{-1}$	
$200 { m GeV}$	$p^{\uparrow} + p \rightarrow \pi^0 + \pi^0 + X$	*	*			
	$p^{\uparrow} + p \rightarrow \gamma + \pi^0 + X$		*	*		
	$p^{\uparrow} + p \rightarrow \pi^0 + \pi^0 + X$	*	*			FMS+EMC
	$p^{\uparrow} + p \rightarrow jet + X$	*	*			FMS+HCAL
	$p^{\uparrow} + p \rightarrow jet + \pi^0 + X$	*	*			
	$p^{\uparrow} + p \rightarrow \Lambda + X$	*	*			
	$p^{\uparrow} + p \rightarrow jet + jet + X$	*	*			FMS+EMC
	$p^{\uparrow} + p \rightarrow \gamma + jet + X$		*	*		HCAL +Tracking

500 GeV Transverse Spin Program

\sqrt{s}	Transverse Process	Collins	Sivers	Sivers SIDIS Sign Change	$\int L$	Detectors
	$p^{\uparrow} + p \rightarrow \pi^0 + X$	*	*			West FMS
	$p^{\uparrow} + p \rightarrow \eta + X$	*	*			East FPD
500 C V	$p^{\uparrow} + p \rightarrow \gamma + X$		*	*	$20 \ pb^{-1}$	+Shower Max
500 GeV	$p^{\uparrow} + p \rightarrow \pi^0 + \pi^0 + X$	*	*			
	$p^{\uparrow} + p \rightarrow \gamma + \pi^0 + X$		*	*		
	$p^{\uparrow} + p \rightarrow \pi^0 + \pi^0 + X$	*	*			FMS+EMC
	$p^{\uparrow} + p \rightarrow jet + X$	*	*			$\rm FMS+HCAL$
	$p^{\uparrow} + p \rightarrow jet + \pi^0 + X$	*	*			
	$p^{\uparrow} + p \to \Lambda + X$	*	*			
	$p^{\uparrow} + p \rightarrow jet + jet + X$	*	*			FMS+EMC
	$p^{\uparrow} + p \rightarrow \gamma + jet + X$		*	*		HCAL +Tracking
	$p^{\uparrow} + p \rightarrow e^+ + e^- + X$		*	*	$250 \ pb^{-1}$	FMS+EMC +Tracking +PID

 $A_{_N} \pi^0$

 $A_{_N} \pi^0$

8 pion Pt GeV/c

7

$A_N(x_F)$ in π^0 and Eta Mass Regions

- 1. $N_{photon} = 2$
- 2. Center Cut (η and ϕ)
- 3. PiO or Eta mass cuts
- 4. Average Yellow Beam Polarization = 56%

$$.55 < X_F < .75$$

 $\langle A_N \rangle_{\eta} = 0.361 \pm 0.064$
 $\langle A_N \rangle_{\pi} = 0.078 \pm 0.018$

For $.55 < X_F < .75$ the asymmetry in the η mass region is greater than 5 sigma above zero, and about 4 sigma above the asymmetry in the π^0 mass region.

	$.50 < x_F < .55$	$.55 < x_F < .60$	$.60 < x_F < .70$	$.70 < x_F < .90$
2.6 < Y < 3.0	0.043	0.070	0.105	0.333
3.0 < Y < 3.4	0.019	0.031	0.047	0.149
3.4 < Y < 3.6	0.015	0.024	0.037	0.116
3.6 < Y < 3.8	0.010	0.016	0.025	0.078
3.8 < Y < 4.1	0.005	0.008	0.012	0.038

Table 5: Estimated error in A_N for η mesons for 200 GeV $30pb^{-1}$ Data Set

Comparison between 200 GeV Measurement and 500 GeV Projections

Photons

What Pythia says For π^0 and γ

STAR data

Direct Photon A_N Measurement

- Predicted violation of factorization
 - If Sivers is mechanism: a sign change is predicted between Direct Photon and DIS.
 - No Collins effect in Direct Photon A_N .
- Measurement of predicted sign change vs A_N in DIS is a milestone goal from Nuclear Science Advisory Committee.
- For $X_F>.5$, single photon cross section similar to π^0 cross section (see previous error estimates).
- Separation of 1 photon from 2 photon clusters based upon shower shape.
- Statistical errors similar to that for π^0 .
- Full errors dominated by background subtraction. (π^0 and η).

FPD Run 6 DATA and Simulations2 Photon pi0 eventsand 1 photon eventsfrom Len Eun

Energy GeV

Extracting Photon A_N

• FMS Run 9 data for energy > 65 GeV is approximately consistent with Pythia 6.222. This FMS data has little overlap with published FPD measurement.

- 30 pb of 200 GeV should produce
 - 50K pi0 with E>65 GeV ; 3.6<Y< 3.7
 - 20K 1 photon events for a 1% measurement of A_N
 - including 50% real direct photons
 - including 25% photons from pi0
 - including 25% photons from eta

•Determination of Single Photon Asymmetry <u>Must</u> be associated with a comparable determination of the Eta and PiO asymmetries at high

energy.

$$\Delta A = \frac{N^{\gamma} A^{\gamma} + N^{\pi^{0}} A^{\pi^{0}} + N^{\eta} A^{\eta}}{N^{\gamma} + N^{\pi^{0}} + N^{\eta}} = 0.5A^{\gamma} + 0.25A^{\pi^{0}} + 0.25A^{\eta}$$

	$.50 < x_F < .55$	$.55 < x_F < .60$	$.60 < x_F < .70$	$.70 < x_F < .90$
2.6 < Y < 3.0	0.006	0.010	0.015	0.047
3.0 < Y < 3.4	0.003	0.004	0.007	0.021
3.4 < Y < 3.6	0.002	0.003	0.005	0.016
3.6 < Y < 3.8	0.001	0.002	0.003	0.011
3.8 < Y < 4.1	0.001	0.001	0.002	0.005

Table 3: Projections for $\pi^0 A_N$: Entrys indicate the expected error in the transverse SSA (ΔA_N) for integrated luminosity of 30 pb^{-1} at $\sqrt{s} = 200 GeV$. The values in table columns are for indicated values of Feynman x_F and the rows are for indicated values of pseudorapidity.

	$.50 < x_F < .55$	$.55 < x_F < .60$	$.60 < x_F < .70$	$.70 < x_F < .90$
2.6 < Y < 3.0	0.043	0.070	0.105	0.333
3.0 < Y < 3.4	0.019	0.031	0.047	0.149
3.4 < Y < 3.6	0.015	0.024	0.037	0.116
3.6 < Y < 3.8	0.010	0.016	0.025	0.078
3.8 < Y < 4.1	0.005	0.008	0.012	0.038

Table 5: Estimated error in A_N for η mesons for 200 GeV $30pb^{-1}$ Data Set

	$.2 < x_F < .22$	$.22 < x_F < .24$	$.24 < x_F < .28$	$.28 < x_F < .36$	$.36 < x_F < .4$
2.6 < Y < 3.0	0.004	0.006	0.009	0.030	0.188
3.0 < Y < 3.4	0.002	0.003	0.004	0.013	0.084
3.4 < Y < 3.6	0.001	0.002	0.003	0.010	0.065
3.6 < Y < 3.8	0.001	0.001	0.002	0.007	0.044
3.8 < Y < 4.1	0.0004	0.001	0.001	0.003	0.022

Table 7: Indicated the estimated error in the transverse SSA (A_N) for production of π mesons with integrated luminosity of 20 pb^{-1} at $\sqrt{s} = 500 GeV$.

Drell Yan

Drell Yan 500 GeV

- FMS E1>20 GeV && E2>20 GeV && Mass> 4 GeV;
- <u>250 pb⁻¹ -> 60k DY pairs</u> -> $\Delta A_N \sim .01$ (statistical only)
- If <u>neutral particles are rejected</u>, the hadronic background due to hadronic energy deposited in the FMS <u>may</u> be comparable to the DY signal.
- Tests of backgrounds probably required!
 - Further background suppression is possible if magnetic charge sign and magnetic momentum determination is available. 30% momentum measurement on each of two tracks -> ~ 10⁻³ supression of background.
 - Further background suppression is possible if charge <u>transition radiation detector</u> is available. ~ 10⁻³ for two tracks.

Simulated and Reconstructed Drell Yan Event

Additional Cuts that could help for Run 9 Data for DY Candidates

- Shower Shape to reject charged pions (0.25 * 0.25)=0.06.
- Charge tracks to veto photon contribution
- Tracking inside magnet (see below) charged track signs for e+ and e- momentum match between momentum from magnetic curvature and EM. (.1 * .1)=0.01 suppression of charged pions
- TRD electron id (.1 * .1) = 0.01 suppression of charged pions.

 $r vs \phi$

View of charged track in magnetic field

For a charged particle exiting the constant field of a solenoid magnetic field through the a hole in a flux returning cap,

Constant axial field

about ½ of the angular bend in the constant field region is negated in the return region.

sagitta

Ľ

For 20 GeV electron Y=3.7

 Trajectory (r vs φ) measured just before exiting constant field

Projected back to vertex Vertex displacement = 7 mm.

Projected forward to FMS ... FMS displacement = 7 mm.

 Trajectory measured at origin Projected to FMS ...
 FMS displacement ~20 mm

 Trajectory measured at sagitta Projected to FMS ... displacement ~ sagitta ~1.5 mm

For 20 GeV electron Y=3.0

 Trajectory (r vs φ) measured just before exiting constant field

Projected back to vertex Vertex displacement = 14 mm.

Projected forward to FMS ... FMS displacement = 14 mm.

- Trajectory measured at origin Projected to FMS ...
 FMS displacement ~40 mm
- Trajectory measured at sagitta Projected to FMS ...

displacement ~ sagitta ~3 mm

Forward Magnetic Tracking Summary

A measurement of the charged track trajectory just inside the flux return (about 3 meters from the magnet center) can be projected to

- either the interaction vertex
- or to the FMS.

The displacement between the projected track and measured track will be called $~D_{\phi}=r\Delta\phi$

$$\frac{\Delta p_t}{p_t} = \frac{\Delta p}{p} = \frac{\Delta D_{\phi}}{D_{\phi}}$$

p_t, p	Y	For $\Delta D_{\phi} = 1mm$	For $\Delta D_{\phi} = 0.5 mm$
		Δp	Δp
		р	р
1 GeV/c, 20GeV/c	3.7	15 %	8%
2 GeV/c,40GeV/c	3.7	30%	15%
2 GeV/c, 20 GeV/c	3.0	7%	4%
4 GeV/c, 40GeV/c	3.0	15%	7%

Run 9 Setup Experience

FMS Setup: Run 9 Experience (Jingguo Ma)

		-1	0				-	5				0)				5	5				1	0	
	0.9	0.863	0.702	0.819	0.997	1.196	0.835	1.082	0.957	0.982	1.912	1.003	0.774).673 <mark>(</mark>	0.878	0.808).799		0.71	2.685	0.78	0.744	0.472	1
-10	0.347	1.787	1.279	0.882	1.238	0.693	3 <mark>1.06</mark> 9	1.111	1.62	1.2	1.104	0.943	1.02 ().915 <mark>1</mark>	1.544 (0.9031	.014	0.984	1.022	1.158	0.979	0.951	1.023	0.445
-10		0.777	0.922	1.218	0.997	1.086	1.116	1.135	1.446	1.014	1.117	1.205	0.977	1.04 0	0.948 <mark>1</mark>	1.0261	1.197	1.062	1.379	1.084	0.917	1.037	1.607	0.743
	0.601	1.254	0.992	1.032	1.006	1.134	1.191	1.388	0.95	0.898	1	1.246	0.906	1.21	1.507 <mark>0</mark>	0.963	1.49	0.976	1.032	1.138	0.999	1.352	2.262	0.394
	0.438	1.475	0.761	0.915	1.073	1.586	1.37			1.092	1.056	0.993	1.012).868 1	1.0791	1.3041	.306	1.243	1.208	1.476	1.104	2.758	1.123	0.969
	0.897	1.148	0.86	0.968	0.933	1.423	31.178	1.052	1.054	1.305	0.886	0.877	0.991	1.2 1	1.1381	1.079	1.25	1.199	1.161	1.158	0.974	1.194	1.084	0.643
-5	0.648	1.568	D.894	1.287	1.085	1.123	31.289	1.096	1.151	1.192	1.625	1.408	1.1391	.185 1	1.059	0.87	1.029	0.998	1.455	0.958	1.156	1.118	0.357	0.739
-5	1.323	1.115	1.258	1.153	1	1.168	31.324											1.017	0.845	0.966	1.001	0.915	0.982	1.406
	0.615	1.2	0.841	1.092	1.339	1.464	1.151											1.148	1.306	0.917	1.917	1.085	1.125	0.577
	0.832	1.772	0.708	1.173	0.987	1.138	8 <mark>1.664</mark>											1.129	1.225	1.183	1.003	1.066	1.078	0.998
		1.253	1.031	1.074	2.422	0.943	30.943											1.499	1.398	1.057	1.185	1.126	0.98	1.26
U	1.153	1.499	1.434	1.118	1.577	1.381	1.05											1.738	1.32	1.249	1.184	1.047	1.223	1.114
0	1.016		1.105	1.076	1.535	1.506	1.278											1.483	1.157	1.217	1.581	1.358	1.366	1.095
	1.274	1.152	1.116	2.441	1.059	1.092	20.988											1.152	1.265	0.977	1.147	1.199	1.114	0.891
	0.409		1.063	1.787	1.295	1.088	31.417											1.344	1.338	1.173	1.388	1.225	1.26	1.01
	1.075	1.202	0.703	1.67	1.089	1.35	1.466											1.178		0.651	1.27	1.146	0.947	0.777
5		1.384	1.038	1.344	0.899	1.179													1.274	1.214	1.162	0.987	1.377	1.025
_	1.384	0.859	1.063	1.488	1.626	1.244			1.337	1.694	2.374	2.124		1.8311	1.4392	2.1161	1.251	1.338	1.158	0.977	1.068	1.318	1.307	0.852
	1.205	0.86	0.927	1.171	1.251	1.933	31.993	1.2	1.036	1.034	1.306	2.134	1.445	1.4191	1.2031	1.3491	.266	1.216	1.138	1.085	1.099	1.539	1.157	1.004
	1.52	0.715	0.95	1.413	0.931	0.847	1.472	1.13	1.598	1.331	2.319	1.562	1.087		2.0311	.204	.455	1.258	1.083	1.214	1.116	1.6	0.541	2.808
	_	1.265					_													1.17				
10		1.178																						
	_	0.767				-																		
	0.911	0.579	0.623	0.533	0.836	0.615	0.827	0.732	1.031	1.059	0.899	1.382	1.262).8780).736 <mark>0</mark>).645	1.05	0.473	1.003	0.969	0.834	0.615	0.707	0.387

Current Best FMS Gain Correction

Run 9 Trigger Rate to Simulated Rate

Ratio

Ratio of Simulated Trigger Rates to Actual Rates Sever Test of Calibration!

data to sim trigger rate ratio for north small

Goals:

- * well matched gains
- * FMS Gain Setup Without Pi0 Reconstruction Iteration?

Consequence: Real Time HV adjustment:

Fast: FMS Turn ON.